Terrain visibility optimization problems

Date

2001

Editor(s)

Advisor

Tansel, Barbaros Ç.

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

Print ISSN

Electronic ISSN

Publisher

Volume

Issue

Pages

Language

English

Type

Journal Title

Journal ISSN

Volume Title

Attention Stats
Usage Stats
0
views
5
downloads

Series

Abstract

The Art Gallery Problem is the problem of determining the number of observers necessary to cover an art gallery such that every point is seen by at least one observer. This problem is well known and has a linear time solution for the 2 dimensional case, but little is known about 3-D case. In this thesis, the dominance relationship between vertex guards and point guards is searched and found that a convex polyhedron can be constructed such that it can be covered by some number of point guards which is one third of the number of the vertex guards needed. A new algorithm which tests the visibility of two vertices is constructed for the discrete case. How to compute the visible region of a vertex is shown for the continuous case. Finally, several potential applications of geometric terrain visibility in geographic information systems and coverage problems related with visibility are presented.

Course

Other identifiers

Book Title

Degree Discipline

Industrial Engineering

Degree Level

Master's

Degree Name

MS (Master of Science)

Citation

Published Version (Please cite this version)