Transmission enhancement through deep subwavelength apertures using connected split ring resonators

buir.contributor.authorÖzbay, Ekmel
buir.contributor.orcidÖzbay, Ekmel|0000-0003-2953-1828
dc.citation.epage3966en_US
dc.citation.issueNumber4en_US
dc.citation.spage3952en_US
dc.citation.volumeNumber18en_US
dc.contributor.authorAtes, D.en_US
dc.contributor.authorCakmak, A.O.en_US
dc.contributor.authorColak, E.en_US
dc.contributor.authorZhao, R.en_US
dc.contributor.authorSoukoulis, C.M.en_US
dc.contributor.authorÖzbay, Ekmelen_US
dc.date.accessioned2016-02-08T10:00:00Z
dc.date.available2016-02-08T10:00:00Z
dc.date.issued2010en_US
dc.departmentDepartment of Electrical and Electronics Engineeringen_US
dc.departmentNanotechnology Research Center (NANOTAM)en_US
dc.departmentDepartment of Physicsen_US
dc.description.abstractWe report astonishingly high transmission enhancement factors through a subwavelength aperture at microwave frequencies by placing connected split ring resonators in the vicinity of the aperture. We carried out numerical simulations that are consistent with our experimental conclusions. We experimentally show higher than 70,000-fold extraordinary transmission through a deep subwavelength aperture with an electrical size of λ/31xλ/12 (width x length), in terms of the operational wavelength. We discuss the physical origins of the phenomenon. Our numerical results predict that even more improvements of the enhancement factors are attainable. Theoretically, the approach opens up the possibility for achieving very large enhancement factors by overcoming the physical limitations and thereby minimizes the dependence on the aperture geometries. © 2010 Optical Society of America.en_US
dc.identifier.doi10.1364/OE.18.003952en_US
dc.identifier.issn10944087
dc.identifier.urihttp://hdl.handle.net/11693/22431
dc.language.isoEnglishen_US
dc.publisherOptical Society of American (OSA)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1364/OE.18.003952en_US
dc.source.titleOptics Expressen_US
dc.subjectComputer simulationen_US
dc.subjectNumerical analysisen_US
dc.subjectOptical resonatorsen_US
dc.subjectEnhancement factoren_US
dc.subjectExtraordinary transmissionen_US
dc.subjectHigh transmissionen_US
dc.subjectNumerical resultsen_US
dc.subjectNumerical simulationen_US
dc.subjectPhysical limitationsen_US
dc.subjectSplit ring resonatoren_US
dc.subjectSubwavelength aperturesen_US
dc.subjectTransmission enhancementen_US
dc.subjectWave transmissionen_US
dc.subjectarticleen_US
dc.subjectequipmenten_US
dc.subjectequipment designen_US
dc.subjectinstrumentationen_US
dc.subjectlighten_US
dc.subjectmicrowave radiationen_US
dc.subjectoptical instrumentationen_US
dc.subjectradiation scatteringen_US
dc.subjectrefractometryen_US
dc.subjecttransduceren_US
dc.subjectEquipment Designen_US
dc.subjectEquipment Failure Analysisen_US
dc.subjectLighten_US
dc.subjectMicrowavesen_US
dc.subjectOptical Devicesen_US
dc.subjectRefractometryen_US
dc.subjectScattering, Radiationen_US
dc.subjectTransducersen_US
dc.titleTransmission enhancement through deep subwavelength apertures using connected split ring resonatorsen_US
dc.typeArticleen_US

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Transmission enhancement through deep subwavelength apertures using connected split ring resonators.pdf
Size:
659.02 KB
Format:
Adobe Portable Document Format
Description:
Full printable version