A novel method for scheduling of wireless ad hoc networks in polynomial time

Date

2020-09-28

Editor(s)

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

IEEE Transactions on Wireless Communications

Print ISSN

1536-1276

Electronic ISSN

Publisher

IEEE

Volume

20

Issue

1

Pages

468 - 480

Language

English

Journal Title

Journal ISSN

Volume Title

Series

Abstract

In this article, we address the scheduling problem in wireless ad hoc networks by exploiting the computational advantage that comes when scheduling problems can be represented by claw-free conflict graphs where we consider a wireless broadcast medium. It is possible to formulate a scheduling problem of broadcast transmissions as finding the maximum weighted independent set (MWIS) in the conflict graph of the network. Finding the MWIS of a general graph is NP-hard leading to an NP-hard complexity of scheduling. In a claw-free conflict graph, MWIS may be found in polynomial time leading to a throughput-optimal scheduling. We show that the conflict graphs of certain wireless ad hoc networks are claw-free. In order to obtain claw-free conflict graphs in general networks, we suggest introducing additional conflicts (edges) with the aim of keeping the decrease in MWIS size minimal. To this end, we introduce an iterative optimization problem to decide where to introduce edges and investigate its efficient implementation. We conclude that the claw breaking method by adding extra edges can perform very close to optimal scenario and better than the polynomial time maximal independent set scheduling benchmark under the necessary assumptions.

Course

Other identifiers

Book Title

Degree Discipline

Degree Level

Degree Name

Citation

Published Version (Please cite this version)