Strongly clean triangular matrix rings with endomorphisms

dc.citation.epage1374en_US
dc.citation.issueNumber6en_US
dc.citation.spage1365en_US
dc.citation.volumeNumber41en_US
dc.contributor.authorChen, H.en_US
dc.contributor.authorKose, H.en_US
dc.contributor.authorKurtulmaz, Y.en_US
dc.date.accessioned2016-02-08T10:58:23Z
dc.date.available2016-02-08T10:58:23Z
dc.date.issued2015en_US
dc.departmentDepartment of Mathematicsen_US
dc.description.abstractA ring R is strongly clean provided that every element in R is the sum of an idempotent and a unit that commutate. Let Tn(R; σ) be the skew triangular matrix ring over a local ring R where σ is an endomorphism of R. We show that T2(R; σ) is strongly clean if and only if for any aϵ 1+J(R); b ϵ J(R), la -rσ (b): R→ R is surjective. Further, T3(R; σ) is strongly clean if la-rσ (b); la-rσ2 (b) and lb-rσ (a)are surjective for any a ϵ U(R); b ϵ J(R). The necessary condition for T3(R; σ) to be strongly clean is also obtained. © 2015 Iranian Mathematical Society.en_US
dc.description.provenanceMade available in DSpace on 2016-02-08T10:58:23Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 70227 bytes, checksum: 26e812c6f5156f83f0e77b261a471b5a (MD5) Previous issue date: 2015en
dc.identifier.eissn1735-8515
dc.identifier.issn1018-6301(print)
dc.identifier.urihttp://hdl.handle.net/11693/26330
dc.language.isoEnglishen_US
dc.publisherSpringeren_US
dc.source.titleBulletin of the Iranian Mathematical Societyen_US
dc.subjectLocal ringsen_US
dc.subjectSkew triangular matrix ringsen_US
dc.subjectStrongly clean ringsen_US
dc.subjectPrimary : 16D70en_US
dc.subjectSecondary : 16E50en_US
dc.titleStrongly clean triangular matrix rings with endomorphismsen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Strongly clean triangular matrix rings with endomorphisms.pdf
Size:
214.26 KB
Format:
Adobe Portable Document Format
Description:
Full printable version