Strongly clean triangular matrix rings with endomorphisms
dc.citation.epage | 1374 | en_US |
dc.citation.issueNumber | 6 | en_US |
dc.citation.spage | 1365 | en_US |
dc.citation.volumeNumber | 41 | en_US |
dc.contributor.author | Chen, H. | en_US |
dc.contributor.author | Kose, H. | en_US |
dc.contributor.author | Kurtulmaz, Y. | en_US |
dc.date.accessioned | 2016-02-08T10:58:23Z | |
dc.date.available | 2016-02-08T10:58:23Z | |
dc.date.issued | 2015 | en_US |
dc.department | Department of Mathematics | en_US |
dc.description.abstract | A ring R is strongly clean provided that every element in R is the sum of an idempotent and a unit that commutate. Let Tn(R; σ) be the skew triangular matrix ring over a local ring R where σ is an endomorphism of R. We show that T2(R; σ) is strongly clean if and only if for any aϵ 1+J(R); b ϵ J(R), la -rσ (b): R→ R is surjective. Further, T3(R; σ) is strongly clean if la-rσ (b); la-rσ2 (b) and lb-rσ (a)are surjective for any a ϵ U(R); b ϵ J(R). The necessary condition for T3(R; σ) to be strongly clean is also obtained. © 2015 Iranian Mathematical Society. | en_US |
dc.description.provenance | Made available in DSpace on 2016-02-08T10:58:23Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 70227 bytes, checksum: 26e812c6f5156f83f0e77b261a471b5a (MD5) Previous issue date: 2015 | en |
dc.identifier.eissn | 1735-8515 | |
dc.identifier.issn | 1018-6301(print) | |
dc.identifier.uri | http://hdl.handle.net/11693/26330 | |
dc.language.iso | English | en_US |
dc.publisher | Springer | en_US |
dc.source.title | Bulletin of the Iranian Mathematical Society | en_US |
dc.subject | Local rings | en_US |
dc.subject | Skew triangular matrix rings | en_US |
dc.subject | Strongly clean rings | en_US |
dc.subject | Primary : 16D70 | en_US |
dc.subject | Secondary : 16E50 | en_US |
dc.title | Strongly clean triangular matrix rings with endomorphisms | en_US |
dc.type | Article | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Strongly clean triangular matrix rings with endomorphisms.pdf
- Size:
- 214.26 KB
- Format:
- Adobe Portable Document Format
- Description:
- Full printable version