Reactive footstep planning for a planar spring mass hopper

dc.citation.epage166en_US
dc.citation.spage160en_US
dc.contributor.authorArslan, Ömüren_US
dc.contributor.authorSaranlı, Uluçen_US
dc.contributor.authorMorgül, Ömeren_US
dc.coverage.spatialSt. Louis, MO, USA
dc.date.accessioned2016-02-08T12:25:10Z
dc.date.available2016-02-08T12:25:10Z
dc.date.issued2009-10en_US
dc.departmentDepartment of Computer Engineeringen_US
dc.departmentDepartment of Electrical and Electronics Engineeringen_US
dc.descriptionDate of Conference: 10-15 Oct. 2009
dc.descriptionConference name: IEEE/RSJ International Conference on Intelligent Robots and Systems, 2009
dc.description.abstractThe main driving force behind research on legged robots has always been their potential for high performance locomotion on rough terrain and the outdoors. Nevertheless, most existing control algorithms for such robots either make rigid assumptions about their environments (e.g flat ground), or rely on kinematic planning at low speeds. Moreover, the traditional separation of planning from control often has negative impact on the robustness of the system against model uncertainty and environment noise. In this paper, we introduce a new method for dynamic, fully reactive footstep planning for a simplified planar spring-mass hopper, a frequently used model for running behaviors. Our approach is based on a careful characterization of the model dynamics and an associated deadbeat controller, used within a sequential composition framework. This yields a purely reactive controller with a very large, nearly global domain of attraction that requires no explicit replanning during execution. Finally, we use a simplified hopper in simulation to illustrate the performance of the planner under different rough terrain scenarios and show that it is extremely robust to both model uncertainty and measurement noise. © 2009 IEEE.en_US
dc.description.provenanceMade available in DSpace on 2016-02-08T12:25:10Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 70227 bytes, checksum: 26e812c6f5156f83f0e77b261a471b5a (MD5) Previous issue date: 2009en
dc.identifier.doi10.1109/IROS.2009.5354354en_US
dc.identifier.urihttp://hdl.handle.net/11693/28613en_US
dc.language.isoEnglishen_US
dc.publisherIEEEen_US
dc.relation.isversionofhttp://dx.doi.org/10.1109/IROS.2009.5354354en_US
dc.source.titleIEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2009en_US
dc.subjectControl algorithmsen_US
dc.subjectDriving forcesen_US
dc.subjectFootstep planningen_US
dc.subjectGlobal domainen_US
dc.subjectLegged robotsen_US
dc.subjectLow speeden_US
dc.subjectMeasurement Noiseen_US
dc.subjectModel dynamicsen_US
dc.subjectModel uncertaintiesen_US
dc.subjectNegative impactsen_US
dc.subjectRe-planningen_US
dc.subjectRough terrainsen_US
dc.subjectSequential compositionsen_US
dc.subjectSpring massen_US
dc.subjectAlgorithmsen_US
dc.subjectControllersen_US
dc.subjectHoppersen_US
dc.subjectIntelligent robotsen_US
dc.subjectLandformsen_US
dc.subjectPlanningen_US
dc.subjectUncertainty analysisen_US
dc.subjectRobot programmingen_US
dc.titleReactive footstep planning for a planar spring mass hopperen_US
dc.typeConference Paperen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Reactive footstep planning for a planar spring mass hopper.pdf
Size:
726.7 KB
Format:
Adobe Portable Document Format
Description:
Full printable version