Molecular scale buckling mechanics in individual aligned single-wall carbon nanotubes on elastomeric substrates

buir.contributor.authorKocabaş, Coşkun
dc.citation.epage130en_US
dc.citation.issueNumber1en_US
dc.citation.spage124en_US
dc.citation.volumeNumber8en_US
dc.contributor.authorKhang, D. -Y.en_US
dc.contributor.authorXiao, J.en_US
dc.contributor.authorKocabaş, Coşkunen_US
dc.contributor.authorMacLaren, S.en_US
dc.contributor.authorBanks, T.en_US
dc.contributor.authorJiang, H.en_US
dc.contributor.authorHuang, Y. Y.en_US
dc.contributor.authorRogers, J. A.en_US
dc.date.accessioned2020-04-06T14:11:06Z
dc.date.available2020-04-06T14:11:06Z
dc.date.issued2008
dc.departmentDepartment of Physicsen_US
dc.departmentAdvanced Research Laboratories (ARL)en_US
dc.description.abstractWe have studied the scaling of controlled nonlinear buckling processes in materials with dimensions in the molecular range (i.e., ∼1 nm) through experimental and theoretical studies of buckling in individual single-wall carbon nanotubes on substrates of poly(dimethylsiloxane). The results show not only the ability to create and manipulate patterns of buckling at these molecular scales, but also, that analytical continuum mechanics theory can explain, quantitatively, all measurable aspects of this system. Inverse calculation applied to measurements of diameterdependent buckling wavelengths yields accurate values of the Young’s moduli of individual SWNTs. As an example of the value of this system beyond its use in this type of molecular scale metrology, we implement parallel arrays of buckled SWNTs as a class of mechanically stretchable conductor.en_US
dc.identifier.doi10.1021/nl072203sen_US
dc.identifier.eissn1530-6992
dc.identifier.issn1530-6984
dc.identifier.urihttp://hdl.handle.net/11693/53556
dc.language.isoEnglishen_US
dc.publisherAmerican Chemical Societyen_US
dc.relation.isversionofhttps://doi.org/10.1021/nl072203sen_US
dc.source.titleNano Lettersen_US
dc.subjectYoung’s modulusen_US
dc.subjectThicknessen_US
dc.subjectQuantum mechanicsen_US
dc.subjectCarbon nanotubesen_US
dc.subjectSubstratesen_US
dc.titleMolecular scale buckling mechanics in individual aligned single-wall carbon nanotubes on elastomeric substratesen_US
dc.typeArticleen_US

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Molecular_scale_buckling_mechanics_in_individual_aligned_single-wall_carbon_nanotubes_on_elastomeric_substrates.pdf
Size:
618.68 KB
Format:
Adobe Portable Document Format
Description: