An exact algorithm for biobjective integer programming problems

buir.contributor.authorDoğan, Saliha Ferda
buir.contributor.authorKarsu, Özlem
buir.contributor.authorUlus, Firdevs
buir.contributor.orcidKarsu, Özlem|0000-0002-9926-2021
buir.contributor.orcidUlus, Firdevs|0000-0002-0532-9927
dc.citation.epage105298-16en_US
dc.citation.spage105298-1en_US
dc.citation.volumeNumber132en_US
dc.contributor.authorDoğan, Saliha Ferda
dc.contributor.authorKarsu, Özlem
dc.contributor.authorUlus, Firdevs
dc.date.accessioned2022-02-17T07:55:50Z
dc.date.available2022-02-17T07:55:50Z
dc.date.issued2021-08
dc.departmentDepartment of Industrial Engineeringen_US
dc.description.abstractWe propose an exact algorithm for solving biobjective integer programming problems, which arise in various applications of operations research. The algorithm is based on solving Pascoletti-Serafini scalarizations to search specified regions (boxes) in the objective space and returns the set of nondominated points. We implement the algorithm with different strategies, where the choices of the scalarization model parameters and splitting rule differ. We then derive bounds on the number of scalarization models solved; and demonstrate the performances of the variants through computational experiments both as exact algorithms and as solution approaches under time restriction. The experiments demonstrate that different strategies have advantages in different aspects: while some are quicker in finding the whole set of nondominated solutions, others return good-quality solutions in terms of representativeness when run under time restriction. We also compare the proposed approach with existing algorithms. The results of our experiments show the satisfactory behaviour of our algorithm, especially when run under time limit, as it achieves better coverage of the whole frontier with a smaller number of solutions compared to the existing algorithms.en_US
dc.description.provenanceSubmitted by Samet Emre (samet.emre@bilkent.edu.tr) on 2022-02-17T07:55:50Z No. of bitstreams: 1 An_exact_algorithm_for_biobjective_integer_programming_problems.pdf: 1450238 bytes, checksum: bc5d7947fdd332db5dd4023a40367bcc (MD5)en
dc.description.provenanceMade available in DSpace on 2022-02-17T07:55:50Z (GMT). No. of bitstreams: 1 An_exact_algorithm_for_biobjective_integer_programming_problems.pdf: 1450238 bytes, checksum: bc5d7947fdd332db5dd4023a40367bcc (MD5) Previous issue date: 2021-08en
dc.embargo.release2024-08-31
dc.identifier.doi10.1016/j.cor.2021.105298en_US
dc.identifier.issn0305-0548
dc.identifier.urihttp://hdl.handle.net/11693/77447
dc.language.isoEnglishen_US
dc.publisherElsevier Ltden_US
dc.relation.isversionofhttps://doi.org/10.1016/j.cor.2021.105298en_US
dc.source.titleComputers & Operations Researchen_US
dc.subjectBiobjective integer programmingen_US
dc.subjectPascoletti-Serafini scalarizationen_US
dc.subjectAlgorithmsen_US
dc.titleAn exact algorithm for biobjective integer programming problemsen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
An_exact_algorithm_for_biobjective_integer_programming_problems.pdf
Size:
1.38 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.69 KB
Format:
Item-specific license agreed upon to submission
Description: