Step-edge-induced resistance anisotropy in quasi-free-standing bilayer chemical vapor deposition graphene on SiC

buir.contributor.authorÖzbay, Ekmel
buir.contributor.orcidÖzbay, Ekmel|0000-0003-2953-1828
dc.citation.epage123708-9en_US
dc.citation.issueNumber12en_US
dc.citation.spage123708-1en_US
dc.citation.volumeNumber116en_US
dc.contributor.authorCiuk, T.en_US
dc.contributor.authorCakmakyapan, S.en_US
dc.contributor.authorÖzbay, Ekmelen_US
dc.contributor.authorCaban, P.en_US
dc.contributor.authorGrodecki, K.en_US
dc.contributor.authorKrajewska, A.en_US
dc.contributor.authorPasternak, I.en_US
dc.contributor.authorSzmidt, J.en_US
dc.contributor.authorStrupinski, W.en_US
dc.date.accessioned2015-07-28T12:01:33Z
dc.date.available2015-07-28T12:01:33Z
dc.date.issued2014en_US
dc.departmentDepartment of Physicsen_US
dc.departmentDepartment of Electrical and Electronics Engineeringen_US
dc.departmentNanotechnology Research Center (NANOTAM)en_US
dc.description.abstractThe transport properties of quasi-free-standing (QFS) bilayer graphene on SiC depend on a range of scattering mechanisms. Most of them are isotropic in nature. However, the SiC substrate morphology marked by a distinctive pattern of the terraces gives rise to an anisotropy in graphene's sheet resistance, which may be considered an additional scattering mechanism. At a technological level, the growth-preceding in situ etching of the SiC surface promotes step bunching which results in macro steps similar to 10 nm in height. In this report, we study the qualitative and quantitative effects of SiC steps edges on the resistance of epitaxial graphene grown by chemical vapor deposition. We experimentally determine the value of step edge resistivity in hydrogen-intercalated QFS-bilayer graphene to be similar to 190 Omega mu m for step height h(S) = 10 nm and provide proof that it cannot originate from mechanical deformation of graphene but is likely to arise from lowered carrier concentration in the step area. Our results are confronted with the previously reported values of the step edge resistivity in monolayer graphene over SiC atomic steps. In our analysis, we focus on large-scale, statistical properties to foster the scalable technology of industrial graphene for electronics and sensor applications. (C) 2014 AIP Publishing LLC.en_US
dc.description.provenanceMade available in DSpace on 2015-07-28T12:01:33Z (GMT). No. of bitstreams: 1 1.4896581.pdf: 4135196 bytes, checksum: 336dc4e2c4d4f22a388b66b2721b691a (MD5)en
dc.identifier.doi10.1063/1.4896581en_US
dc.identifier.issn0021-8979
dc.identifier.urihttp://hdl.handle.net/11693/12450
dc.language.isoEnglishen_US
dc.publisherAIP Publishingen_US
dc.relation.isversionofhttp://dx.doi.org/ 10.1063/1.4896581en_US
dc.source.titleJournal of Applied Physicsen_US
dc.subjectEpitaxial Grapheneen_US
dc.subjectWafer-scaleen_US
dc.subjectTransport-propertiesen_US
dc.subjectSuspended Grapheneen_US
dc.subjectSilicon-carbideen_US
dc.subjectScatteringen_US
dc.subjectMobilityen_US
dc.subjectDevicesen_US
dc.subjectCarbonen_US
dc.titleStep-edge-induced resistance anisotropy in quasi-free-standing bilayer chemical vapor deposition graphene on SiCen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1.4896581.pdf
Size:
3.94 MB
Format:
Adobe Portable Document Format
Description:
Full printable version