Segmentation-aware MRI reconstruction

buir.contributor.authorAcar, Mert
buir.contributor.authorÇukur, Tolga
buir.contributor.orcidÇukur, Tolga|0000-0002-2296-851X
dc.citation.epage61en_US
dc.citation.spage53en_US
dc.citation.volumeNumber13587en_US
dc.contributor.authorAcar, Mert
dc.contributor.authorÇukur, Tolga
dc.contributor.authorÖksüz, İ.
dc.date.accessioned2023-02-15T13:35:08Z
dc.date.available2023-02-15T13:35:08Z
dc.date.issued2022-09-22
dc.descriptionConference Name: 5th International Workshop on Machine Learning for Medical Reconstruction, MLMIR 2022,en_US
dc.descriptionDate of Conference: 22 September 2022en_US
dc.description.abstractDeep learning models have been broadly adopted for accelerating MRI acquisitions in recent years. A common approach is to train deep models based on loss functions that place equal emphasis on reconstruction errors across the field-of-view. This homogeneous weighting of loss contributions might be undesirable in cases where the diagnostic focus is on tissues in a specific subregion of the image. In this paper, we propose a framework for segmentation-aware reconstruction based on segmentation as a proxy task. We leverage an end-to-end model comprising reconstruction and segmentation networks; and leverage backpropagation of segmentation error to devise a pseudo-attention effect to focus the reconstruction network. We introduce a novel stabilization method to prevent convergence onto a local minima with unacceptably poor reconstruction or segmentation performance. Our stabilization approach initiates learning on fully-sampled acquisitions, and gradually increases the undersampling rate assumed in the training set to its desired value. We validate our approach for cardiac MR reconstruction on the publicly available OCMR dataset. Segmentation-aware reconstruction significantly outperforms vanilla reconstruction for cardiac imaging.en_US
dc.description.provenanceSubmitted by Evrim Ergin (eergin@bilkent.edu.tr) on 2023-02-15T13:35:08Z No. of bitstreams: 1 Segmentation_aware_MRI_reconstruction.pdf: 1266833 bytes, checksum: 0d9738a31ddf5aab6e46b2009792d8c2 (MD5)en
dc.description.provenanceMade available in DSpace on 2023-02-15T13:35:08Z (GMT). No. of bitstreams: 1 Segmentation_aware_MRI_reconstruction.pdf: 1266833 bytes, checksum: 0d9738a31ddf5aab6e46b2009792d8c2 (MD5) Previous issue date: 2022-09-22en
dc.identifier.doi10.1007/978-3-031-17247-2_6en_US
dc.identifier.eisbn978-3-031-17247-2
dc.identifier.isbn978-3-031-17246-5
dc.identifier.urihttp://hdl.handle.net/11693/111374
dc.language.isoEnglishen_US
dc.publisherSpringer Chamen_US
dc.relation.ispartofseriesLecture Notes in Computer Science;
dc.relation.isversionofhttps://doi.org/10.1007/978-3-031-17247-2_6en_US
dc.source.titleMachine Learning for Medical Image Reconstructionen_US
dc.subjectCardiac MRIen_US
dc.subjectConvolutional neural networksen_US
dc.subjectReconstructionen_US
dc.subjectSegmentationen_US
dc.titleSegmentation-aware MRI reconstructionen_US
dc.typeConference Paperen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Segmentation_aware_MRI_reconstruction.pdf
Size:
1.21 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.69 KB
Format:
Item-specific license agreed upon to submission
Description: