Fast algorithms for digital computation of linear canonical transforms
Date
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
Print ISSN
Electronic ISSN
Publisher
Volume
Issue
Pages
Language
Type
Journal Title
Journal ISSN
Volume Title
Citation Stats
Attention Stats
Usage Stats
views
downloads
Series
Abstract
Fast and accurate algorithms for digital computation of linear canonical transforms (LCTs) are discussed. Direct numerical integration takes O.N2/ time, where N is the number of samples. Designing fast and accurate algorithms that take O.N logN/ time is of importance for practical utilization of LCTs. There are several approaches to designing fast algorithms. One approach is to decompose an arbitrary LCT into blocks, all of which have fast implementations, thus obtaining an overall fast algorithm. Another approach is to define a discrete LCT (DLCT), based on which a fast LCT (FLCT) is derived to efficiently compute LCTs. This strategy is similar to that employed for the Fourier transform, where one defines the discrete Fourier transform (DFT), which is then computed with the fast Fourier transform (FFT). A third, hybrid approach involves a DLCT but employs a decomposition-based method to compute it. Algorithms for two-dimensional and complex parametered LCTs are also discussed.