Quantum properties of multipole radiation

Date

2002

Editor(s)

Advisor

Shumovsky, Alexander S.

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

Print ISSN

Electronic ISSN

Publisher

Volume

Issue

Pages

Language

English

Type

Journal Title

Journal ISSN

Volume Title

Attention Stats
Usage Stats
1
views
10
downloads

Series

Abstract

In this study, multipole expansion of quantum electromagnetic radiation is constructed and quantized by canonical transformation with increasing demand of some modern research areas of physics such as entanglement of the orbital angular momentum states, novel experiments with trapped atoms, and the atomic and molecular transitions with given angular momentum. Also, the SU(2) invariance of quantum field and the rotational symmetry of vacuum noise of polarization with respect to source location are proved. It is shown that, at any point we can construct a proper frame in which the description of polarization is reduced to a conventional (2 × 2) polarization matrix. And peculiarities of electric and magnetic-type zero-point oscillations were examined, and as a result it is shown that the monochromatic zeropoint oscillations of all types and modes, have constant level in the volume of quantization. Finally, the complete local representation of photon operators, which correspond to the states of photons with given projection of angular momentum at any point, is constructed for the possible utility of near-field optics.

Course

Other identifiers

Book Title

Degree Discipline

Physics

Degree Level

Master's

Degree Name

MS (Master of Science)

Citation

Published Version (Please cite this version)