Mide22: an annotated multi-event tweet dataset for misinformation detection

Series

Abstract

The rapid dissemination of misinformation through online social networks poses a pressing issue with harmful consequences jeopardizing human health, public safety, democracy, and the economy; therefore, urgent action is required to address this problem. In this study, we construct a new human-annotated dataset, called MiDe22, having 5,284 English and 5,064 Turkish tweets with their misinformation labels for several recent events between 2020 and 2022, including the Russia-Ukraine war, COVID-19 pandemic, and Refugees. The dataset includes user engagements with the tweets in terms of likes, replies, retweets, and quotes. We also provide a detailed data analysis with descriptive statistics and the experimental results of a benchmark evaluation for misinformation detection. © 2024 ELRA Language Resource Association: CC BY-NC 4.0.

Source Title

Publisher

European Language Resources Association (ELRA)

Course

Other identifiers

Book Title

Degree Discipline

Degree Level

Degree Name

Citation

Published Version (Please cite this version)

Language

English