Nash and Stackelberg equilibria for dynamic cheap talk and signaling games

Date

2017

Editor(s)

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

Proceedings of the American Control Conference, IEEE 2017

Print ISSN

0743-1619

Electronic ISSN

Publisher

IEEE

Volume

Issue

Pages

3644 - 3649

Language

English

Journal Title

Journal ISSN

Volume Title

Citation Stats
Attention Stats
Usage Stats
3
views
12
downloads

Series

Abstract

Simultaneous (Nash) and sequential (Stackelberg) equilibria of two-player dynamic quadratic cheap talk and signaling game problems are investigated under a perfect Bayesian formulation. For the dynamic scalar and multi-dimensional cheap talk, the Nash equilibrium cannot be fully revealing whereas the Stackelberg equilibrium is always fully revealing. Further, the final state Nash equilibria have to be essentially quantized when the source is scalar and has a density, and non-revealing for the multi-dimensional case. In the dynamic signaling game where the transmission of a Gauss-Markov source over a memoryless Gaussian channel is considered, affine policies constitute an invariant subspace under best response maps for both scalar and multi-dimensional sources under Nash equilibria; however, the Stackelberg equilibrium policies are always linear for scalar sources but may be non-linear for multi-dimensional sources. Further, under the Stackelberg setup, the conditions under which the equilibrium is non-informative are derived for scalar sources.

Course

Other identifiers

Book Title

Degree Discipline

Degree Level

Degree Name

Citation

Published Version (Please cite this version)