Empirical mode decomposition aided by adaptive low pass filtering
Date
Authors
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
Print ISSN
Electronic ISSN
Publisher
Volume
Issue
Pages
Language
Type
Journal Title
Journal ISSN
Volume Title
Citation Stats
Attention Stats
Usage Stats
views
downloads
Series
Abstract
Empirical Mode Decomposition (EMD) is an adaptive signal analysis technique which derives its basis functions from the signal itself. EMD is realized through successive iterations of a sifting process requiring local mean computation. For that purpose, local minima and maxima of the signal are assumed to constitute proper local time scales. EMD lacks accuracy, however, experiencing the so-called mode mixing phenomenon in the presence of noise which creates artificial extrema. In this paper, we propose adaptively filtering the signal in Discrete Cosine Transform domain before each local mean computation step to prevent mode mixing. Denoising filter thresholds are optimized for a product form criterion which is a function of the preserved energy and the eliminated number of extrema of the signal after filtering. Results obtained from synthetic signals reveal the potential of the proposed technique. © 2012 IEEE.