Synthetic cellular systems for whole cell biocatalysis

Available
The embargo period has ended, and this item is now available.

Date

2017-09

Editor(s)

Advisor

Şeker, Urartu Özgür Şafak

Supervisor

Co-Advisor

Co-Supervisor

Instructor

BUIR Usage Stats
3
views
22
downloads

Series

Abstract

Synthetic biology is a field utilizing basic science and engineering approaches to create novel synthetic systems. Biocatalysis is one of those already existing processes which was reviewed intensely due to its advantages of using enzymes as catalysts. It is efficient, requires less additional reagents compared to chemical transformation methods, and it is environment friendly. Due to selectivity of enzymes it is easier to separate products. Enzymes are capable of carrying out many basic and complex reactions however some common problems occur in most strategies due to the nature of enzymes and mostly requirement of purification of the enzymes. Major issues are longevity-sustainability of the enzymes, modularity of the system, and yield of the enzymes. Thanks to the present advances in recombinant DNA technologies and discoveries in bacteria mechanisms like secretion, these pitfalls are addressable through Syntethic biology. We proposed a series of genetic circuits for the sustainability of biocatalysis systems by employing engineered bacterial biofilms. The final, biofilm proteins made nanofibers are protecting both cells and enzymes thus providing an environment fit for replenishment of the enzymes along with modularity to the system. Here we present two synthetic cellular systems utilizing engineered biofilms to address the issues of biocatalysis and we propose an RNA based synthetic regulatory component to increase the robustness of our systems.

Source Title

Publisher

Course

Other identifiers

Book Title

Degree Discipline

Materials Science and Nanotechnology

Degree Level

Master's

Degree Name

MS (Master of Science)

Citation

Published Version (Please cite this version)

Language

English

Type