Analytical modeling of multi-channel optical burst switching with multiple traffic classes

Date

2011

Editor(s)

Advisor

Akar, Nail

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

Print ISSN

Electronic ISSN

Publisher

Volume

Issue

Pages

Language

English

Type

Journal Title

Journal ISSN

Volume Title

Attention Stats
Usage Stats
1
views
7
downloads

Series

Abstract

In this thesis, we study an Optical Burst Switching (OBS) node with links carrying multiple wavelength channels (called hereafter channels) with multiple traffic classes. We assume that offset-based service differentiation is used to differentiate among these traffic classes in terms of packet loss probabilities. We first propose a basic scheme, called bLAUC (Basic Latest Available Unused Channel) for channel scheduling. Although practicality of the bLAUC scheme is relatively limited when compared to other conventional schedulers such as LAUC, we study bLAUC in this thesis due to its tractability to analysis and moreover bLAUC possesses certain crucial properties of conventional schedulers. We then propose an iterative procedure to approximate per-class loss probabilities for the OBS link of interest when packet arrivals to the link are Poisson and packet lengths are exponentially distributed. In our iterative procedure, we model a multi-channel OBS link with Poisson arrivals by a single channel Markov fluid queue with occupancy-dependent packet arrival intensities. The proposed procedure provides acceptable approximations for a wide range of scenarios with relatively low complexity. Consequently, the proposed procedure can be used in optimization problems concerning multiclass OBS and in finding guidelines to effectively utilize OBS resources under loss probability constraints.

Course

Other identifiers

Book Title

Degree Discipline

Electrical and Electronic Engineering

Degree Level

Master's

Degree Name

MS (Master of Science)

Citation

Published Version (Please cite this version)