Finding robustly fair solutions in resource allocation

buir.contributor.authorKarsu, Ozlem
buir.contributor.authorElver, Izzet Egemen
buir.contributor.authorKinik, Tuna Arda
buir.contributor.orcidKarsu, Ozlem|0000-0002-9926-2021
dc.citation.epage14
dc.citation.spage1
dc.citation.volumeNumber131
dc.contributor.authorKarsu, Ozlem
dc.contributor.authorElver, Izzet Egemen
dc.contributor.authorKinik, Tuna Arda
dc.date.accessioned2025-02-18T18:10:27Z
dc.date.available2025-02-18T18:10:27Z
dc.date.issued2025-02
dc.departmentDepartment of Industrial Engineering
dc.description.abstractIn this study, we consider resource allocation settings where the decisions affect multiple beneficiaries and the decision maker aims to ensure that the effect is distributed to the beneficiaries in an equitable manner. We specifically consider stochastic environments where there is uncertainty in the system and propose a robust programming approach that aims at maximizing system efficiency while guaranteeing an equitable benefit allocation even under the worst scenario. Acknowledging the fact that the robust solution may lead to high efficiency loss and may be over-conservative, we adopt a parametric approach that allows controlling the level of conservatism and present the decision maker alternative solutions that reveal the trade-off between efficiency and the degree of conservatism when incorporating fairness. We obtain tractable formulations, leveraging the results we provide on the properties of highly unfair allocations. We demonstrate the usability of our approach on project selection and shelter allocation applications.
dc.description.provenanceSubmitted by Mutluhan Gürel (mutluhan.gurel@bilkent.edu.tr) on 2025-02-18T18:10:27Z No. of bitstreams: 1 Finding_robustly_fair_solutions_in_resource_allocation.pdf: 880372 bytes, checksum: 32984f626dee3c5ee98100a269f182c3 (MD5)en
dc.description.provenanceMade available in DSpace on 2025-02-18T18:10:27Z (GMT). No. of bitstreams: 1 Finding_robustly_fair_solutions_in_resource_allocation.pdf: 880372 bytes, checksum: 32984f626dee3c5ee98100a269f182c3 (MD5) Previous issue date: 2025-02en
dc.embargo.release2027-02-28
dc.identifier.doi10.1016/j.omega.2024.103208
dc.identifier.eisbn1873-5274
dc.identifier.issn0305-0483
dc.identifier.urihttps://hdl.handle.net/11693/116393
dc.language.isoEnglish
dc.publisherElsevier Ltd
dc.relation.isversionofhttps://doi.org/10.1016/j.omega.2024.103208
dc.rightsCC BY-NC-ND 4.0 (Attribution-NonCommercial-NoDerivatives 4.0 International Deed)
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.source.titleOmega
dc.subjectFairness
dc.subjectEquity
dc.subjectRobust programming
dc.subjectKnapsack problems
dc.subjectResource allocation
dc.titleFinding robustly fair solutions in resource allocation
dc.typeArticle

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Finding_robustly_fair_solutions_in_resource_allocation.pdf
Size:
859.74 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: