A deep learning based decoder for concatenated coding over deletion channels

buir.contributor.authorKargı, Eksal Uras
buir.contributor.authorDuman, Tolga Mete
buir.contributor.orcidKargı, Eksal Uras|0009-0005-6058-9560
buir.contributor.orcidDuman, Tolga Mete|0000-0002-5187-8660
dc.citation.epage2802
dc.citation.spage2797
dc.contributor.authorKargı, Eksal Uras
dc.contributor.authorDuman, Tolga Mete
dc.coverage.spatialDenver, CO, USA
dc.date.accessioned2025-02-17T08:14:40Z
dc.date.available2025-02-17T08:14:40Z
dc.date.issued2024
dc.departmentDepartment of Electrical and Electronics Engineering
dc.descriptionDate of Conference: 9-13 June 2024
dc.descriptionConference Name: 59th Annual IEEE International Conference on Communications, ICC 2024
dc.description.abstractIn this paper, we introduce a deep learning-based decoder designed for concatenated coding schemes over a deletion/substitution channel. Specifically, we focus on serially concatenated codes, where the outer code is either a convolutional or a low-density parity-check (LDPC) code, and the inner code is a marker code. We utilize Bidirectional Gated Recurrent Units (BI-GRUs) as log-likelihood ratio (LLR) estimators and outer code decoders for estimating the message bits. Our results indicate that decoders powered by BI-GRUs perform comparably in terms of error rates with the MAP detection of the marker code. We also find that a single network can work well for a wide range of channel parameters. In addition, it is possible to use a single BI-GRU based network to estimate the message bits via one-shot decoding when the outer code is a convolutional code. 11Code is available at https://github.com/Bilkent-CTAR-Lab/DNN-for-Deletion-Channel
dc.identifier.doi10.1109/ICC51166.2024.10622561
dc.identifier.eisbn978-1-7281-9054-9
dc.identifier.eissn1938-1883
dc.identifier.isbn978-1-7281-9055-6
dc.identifier.issn1550-3607
dc.identifier.urihttps://hdl.handle.net/11693/116300
dc.language.isoEnglish
dc.publisherIEEE
dc.relation.isversionofhttps://dx.doi.org/10.1109/ICC51166.2024.10622561
dc.source.titleICC 2024 - IEEE International Conference on Communications
dc.subjectDeep learning
dc.subjectRNN
dc.subjectGRU
dc.subjectDeletion channels
dc.subjectChannels with synchronization errors
dc.subjectMarker codes
dc.titleA deep learning based decoder for concatenated coding over deletion channels
dc.typeConference Paper

Files