Analog CMOS implementation of cellular neural networks

buir.advisorTan, Mehmet Ali
dc.contributor.authorBaktır, İzzet Adil
dc.date.accessioned2016-01-08T20:09:38Z
dc.date.available2016-01-08T20:09:38Z
dc.date.issued1991
dc.descriptionCataloged from PDF version of article.en_US
dc.descriptionIncludes bibliographical references leaves 38-39en_US
dc.description.abstractAn analog CMOS circuit realization of cellular neural networks with transconductance elements is presented in this thesis. This realization can be easily adapted to various types of applications in image processing by just choosing the appropriate transconductance parameters according to the predetermined coefficients. The noise-reduction and edge detection examples have shown the effectiveness of the designed networks in real time image processing applications. For “fix function” cellular neural network circuits the number of transistors are reduced further by a new multi-input voltage-controlled current source.en_US
dc.description.statementofresponsibilityBaktır, İzzet Adilen_US
dc.format.extentix, 39 leavesen_US
dc.identifier.urihttp://hdl.handle.net/11693/17362
dc.language.isoEnglishen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectCellular Neural Networksen_US
dc.subjectAnalog VLSIen_US
dc.subjectCMOSen_US
dc.subjectTransconductanceen_US
dc.subject.lccTK7874 .B35 1991en_US
dc.subject.lcshLinear integrated circuits.en_US
dc.subject.lcshMetal oxide semiconductors, complementary.en_US
dc.subject.lcshIntegrated circuits--very large scale integration.en_US
dc.titleAnalog CMOS implementation of cellular neural networksen_US
dc.typeThesisen_US
thesis.degree.disciplineElectrical and Electronic Engineering
thesis.degree.grantorBilkent University
thesis.degree.levelMaster's
thesis.degree.nameMS (Master of Science)

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
B009130.pdf
Size:
4.83 MB
Format:
Adobe Portable Document Format
Description:
Full printable version