The multi-terminal maximum-flow network-interdiction problem

dc.citation.epage251en_US
dc.citation.issueNumber2en_US
dc.citation.spage241en_US
dc.citation.volumeNumber211en_US
dc.contributor.authorAkgün, İ.en_US
dc.contributor.authorTansel, B. Ç.en_US
dc.contributor.authorWood, R. K.en_US
dc.date.accessioned2016-02-08T09:52:52Z
dc.date.available2016-02-08T09:52:52Z
dc.date.issued2011en_US
dc.departmentDepartment of Industrial Engineeringen_US
dc.description.abstractThis paper defines and studies the multi-terminal maximum-flow network-interdiction problem (MTNIP) in which a network user attempts to maximize flow in a network among K ≥ 3 pre-specified node groups while an interdictor uses limited resources to interdict network arcs to minimize this maximum flow. The paper proposes an exact (MTNIP-E) and an approximating model (MPNIM) to solve this NP-hard problem and presents computational results to compare the models. MTNIP-E is obtained by first formulating MTNIP as bi-level min-max program and then converting it into a mixed integer program where the flow is explicitly minimized. MPNIM is binary-integer program that does not minimize the flow directly. It partitions the node set into disjoint subsets such that each node group is in a different subset and minimizes the sum of the arc capacities crossing between different subsets. Computational results show that MPNIM can solve all instances in a few seconds while MTNIP-E cannot solve about one third of the problems in 24 hour. The optimal objective function values of both models are equal to each other for some problems while they differ from each other as much as 46.2% in the worst case. However, when the post-interdiction flow capacity incurred by the solution of MPNIM is computed and compared to the objective value of MTNIP-E, the largest difference is only 7.90% implying that MPNIM may be a very good approximation to MTNIP-E. © 2011 Elsevier B.V. All rights reserved.en_US
dc.description.provenanceMade available in DSpace on 2016-02-08T09:52:52Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 70227 bytes, checksum: 26e812c6f5156f83f0e77b261a471b5a (MD5) Previous issue date: 2011en
dc.identifier.doi10.1016/j.ejor.2010.12.011en_US
dc.identifier.issn0377-2217
dc.identifier.urihttp://hdl.handle.net/11693/21908
dc.language.isoEnglishen_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/j.ejor.20http://dx.doi.org/10.12.011en_US
dc.source.titleEuropean Journal of Operational Researchen_US
dc.subjectInteger programmingen_US
dc.subjectNetwork flowsen_US
dc.subjectNetwork interdictionen_US
dc.subjectOR in militaryen_US
dc.subjectComputational resultsen_US
dc.subjectDisjoint subsetsen_US
dc.subjectFlow capacityen_US
dc.subjectFlow networken_US
dc.subjectInteger programen_US
dc.subjectMaximum flowsen_US
dc.subjectMin-maxen_US
dc.subjectMixed-integer programsen_US
dc.subjectMulti terminalsen_US
dc.subjectNetwork flowsen_US
dc.subjectNetwork interdictionen_US
dc.subjectNetwork usersen_US
dc.subjectNP-HARD problemen_US
dc.subjectObjective function valuesen_US
dc.subjectOR in militaryen_US
dc.subjectWorst caseen_US
dc.subjectComputational complexityen_US
dc.subjectRough set theoryen_US
dc.subjectInteger programmingen_US
dc.titleThe multi-terminal maximum-flow network-interdiction problemen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
The multi-terminal maximum-flow network-interdiction problem.pdf
Size:
701.66 KB
Format:
Adobe Portable Document Format
Description:
Full printable version