Vendor location problem

Date

2009

Editor(s)

Advisor

Yaman, Hande

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

Print ISSN

Electronic ISSN

Publisher

Volume

Issue

Pages

Language

English

Type

Journal Title

Journal ISSN

Volume Title

Attention Stats
Usage Stats
1
views
14
downloads

Series

Abstract

In this study, we aim to design a distribution system with the following components: the location of vendors, the number of vendors, the service region of the vendors, the number of vehicles and workers, and the assignment of demand points to these vendors and vehicles. We define our problem as a two-level capacitated discrete facility location problem with minimum profit constraints and call it Vendor Location Problem. In order to formulate the problem, two different objective functions are used: vendors’s profit maximization and maximization of the demand covered. Integer linear programs for these two versions of the problem are formulated. Valid inequalities are used to strengthen the upper bounds. Finally, the performance of these models with different parameters are compared in terms of linear programming relaxation gap, optimality gap, CPU time, and the number of opened nodes for four different types of instances: instances with demand and profit which are independent of distance; profit function of distance; demand function of distance; demand and profit function of distance.

Course

Other identifiers

Book Title

Degree Discipline

Industrial Engineering

Degree Level

Master's

Degree Name

MS (Master of Science)

Citation

Published Version (Please cite this version)