Stochastic subgradient algorithms for strongly convex optimization over distributed networks

Date

2017

Authors

Sayin, M. O.
Vanli, N. D.
Kozat, S. S.
Başar, T.

Editor(s)

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

IEEE Transactions on Network Science and Engineering

Print ISSN

2327-4697

Electronic ISSN

Publisher

IEEE Computer Society

Volume

4

Issue

4

Pages

248 - 260

Language

English

Journal Title

Journal ISSN

Volume Title

Citation Stats
Attention Stats
Usage Stats
1
views
12
downloads

Series

Abstract

We study diffusion and consensus based optimization of a sum of unknown convex objective functions over distributed networks. The only access to these functions is through stochastic gradient oracles, each of which is only available at a different node; and a limited number of gradient oracle calls is allowed at each node. In this framework, we introduce a convex optimization algorithm based on stochastic subgradient descent (SSD) updates. We use a carefully designed time-dependent weighted averaging of the SSD iterates, which yields a convergence rate of O N ffiffiffi N p (1s)T after T gradient updates for each node on a network of N nodes, where 0 ≤ σ < 1 denotes the second largest singular value of the communication matrix. This rate of convergence matches the performance lower bound up to constant terms. Similar to the SSD algorithm, the computational complexity of the proposed algorithm also scales linearly with the dimensionality of the data. Furthermore, the communication load of the proposed method is the same as the communication load of the SSD algorithm. Thus, the proposed algorithm is highly efficient in terms of complexity and communication load. We illustrate the merits of the algorithm with respect to the state-of-art methods over benchmark real life data sets. © 2017 IEEE.

Course

Other identifiers

Book Title

Degree Discipline

Degree Level

Degree Name

Citation

Published Version (Please cite this version)