Permutations avoiding 312 and another pattern, Chebyshev polynomials and longest increasing subsequences

buir.contributor.authorYıldırım, Gökhan
dc.citation.epage102002-1en_US
dc.citation.spage102002-17en_US
dc.citation.volumeNumber116en_US
dc.contributor.authorMansour, T.
dc.contributor.authorYıldırım, Gökhan
dc.date.accessioned2021-02-11T11:58:15Z
dc.date.available2021-02-11T11:58:15Z
dc.date.issued2020
dc.departmentDepartment of Mathematicsen_US
dc.description.abstractWe study the longest increasing subsequence problem for random permutations avoiding the pattern 312 and another pattern τ under the uniform probability distribution. We determine the exact and asymptotic formulas for the average length of the longest increasing subsequences for such permutation classes specifically when the pattern τ is monotone increasing or decreasing, or any pattern of length four.en_US
dc.description.provenanceSubmitted by Evrim Ergin (eergin@bilkent.edu.tr) on 2021-02-11T11:58:15Z No. of bitstreams: 1 Permutations_avoiding_312_and_another_pattern_Chebyshev_polynomials_and_longest_increasing_subsequences.pdf: 391035 bytes, checksum: 83bba9e361af65c072e0784596efa02c (MD5)en
dc.description.provenanceMade available in DSpace on 2021-02-11T11:58:15Z (GMT). No. of bitstreams: 1 Permutations_avoiding_312_and_another_pattern_Chebyshev_polynomials_and_longest_increasing_subsequences.pdf: 391035 bytes, checksum: 83bba9e361af65c072e0784596efa02c (MD5) Previous issue date: 2020-01-24en
dc.embargo.release2022-01-24
dc.identifier.doi10.1016/j.aam.2020.102002en_US
dc.identifier.issn0196-8858
dc.identifier.urihttp://hdl.handle.net/11693/55083
dc.language.isoEnglishen_US
dc.publisherElsevieren_US
dc.relation.isversionofhttps://dx.doi.org/10.1016/j.aam.2020.102002en_US
dc.source.titleAdvances in Applied Mathematicsen_US
dc.subjectLongest increasing subsequence problemen_US
dc.subjectPattern-avoiding permutationsen_US
dc.subjectChebyshev polynomialsen_US
dc.subjectGenerating functionsen_US
dc.titlePermutations avoiding 312 and another pattern, Chebyshev polynomials and longest increasing subsequencesen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Permutations_avoiding_312_and_another_pattern_Chebyshev_polynomials_and_longest_increasing_subsequences.pdf
Size:
381.87 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: