Operator theory-based discrete fractional Fourier transform

buir.contributor.authorKoç, Aykut
dc.citation.epage1468en_US
dc.citation.issueNumber7en_US
dc.citation.spage1461en_US
dc.citation.volumeNumber13en_US
dc.contributor.authorKoç, Aykuten_US
dc.date.accessioned2020-01-31T12:46:06Z
dc.date.available2020-01-31T12:46:06Z
dc.date.issued2019
dc.departmentNational Magnetic Resonance Research Center (UMRAM)en_US
dc.description.abstractThe fractional Fourier transform is of importance in several areas of signal processing with many applications including optical signal processing. Deploying it in practical applications requires discrete implementations, and therefore defining a discrete fractional Fourier transform (DFRT) is of considerable interest. We propose an operator theory-based approach to defining the DFRT. By deploying hyperdifferential operators, a DFRT matrix can be defined compatible with the theory of the discrete Fourier transform. The proposed DFRT only uses the ordinary Fourier transform and the coordinate multiplication and differentiation operations. We also propose and compare several alternative discrete definitions of coordinate multiplication and differentiation operations, each of which leads to an alternative DFRT definition. Unitarity and approximation to the continuous transform properties are also investigated in detail. The proposed DFRT is highly accurate in approximating the continuous transform.en_US
dc.description.provenanceSubmitted by Zeynep Aykut (zeynepay@bilkent.edu.tr) on 2020-01-31T12:46:06Z No. of bitstreams: 2 Operator_theory-based_discrete_fractional_Fourier_transform.pdf: 363312 bytes, checksum: e05fb3f8d13f05c1eb852c42d8f48f22 (MD5) Operator_theory-based_discrete_fractional_Fourier_transform.pdf: 363312 bytes, checksum: e05fb3f8d13f05c1eb852c42d8f48f22 (MD5)en
dc.description.provenanceMade available in DSpace on 2020-01-31T12:46:06Z (GMT). No. of bitstreams: 2 Operator_theory-based_discrete_fractional_Fourier_transform.pdf: 363312 bytes, checksum: e05fb3f8d13f05c1eb852c42d8f48f22 (MD5) Operator_theory-based_discrete_fractional_Fourier_transform.pdf: 363312 bytes, checksum: e05fb3f8d13f05c1eb852c42d8f48f22 (MD5) Previous issue date: 2019en
dc.identifier.doi10.1007/s11760-019-01553-xen_US
dc.identifier.issn1863-1703
dc.identifier.urihttp://hdl.handle.net/11693/52953
dc.language.isoEnglishen_US
dc.publisherSpringeren_US
dc.relation.isversionofhttps://dx.doi.org/10.1007/s11760-019-01553-xen_US
dc.source.titleSignal, Image and Video Processingen_US
dc.subjectFractional Fourier transform (FRT)en_US
dc.subjectOperator theoryen_US
dc.subjectDiscrete transformsen_US
dc.subjectHyperdifferential operatorsen_US
dc.titleOperator theory-based discrete fractional Fourier transformen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Operator_theory-based_discrete_fractional_Fourier_transform.pdf
Size:
354.8 KB
Format:
Adobe Portable Document Format
Description:
View / Download