Optimal stochastic signaling under average power and bit rate constraints

Date

2018

Editor(s)

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

IEEE Transactions on Communications

Print ISSN

0090-6778

Electronic ISSN

1558-0857

Publisher

Institute of Electrical and Electronics Engineers

Volume

66

Issue

12

Pages

6028 - 6039

Language

English

Journal Title

Journal ISSN

Volume Title

Citation Stats
Attention Stats
Usage Stats
3
views
14
downloads

Series

Abstract

The optimal stochastic signaling based on the joint design of prior distribution and signal constellation is investigated under an average bit rate and power constraints. First, an optimization problem is formulated to maximize the average probability of correct decision over the set of joint distribution functions for prior probabilities and the corresponding constellation symbols. Next, an alternative problem formulation, for which the optimal joint distribution is characterized by a randomization among at most three mass points, is provided, and it is shown that both formulations share the same solution. Three special cases of the problem are investigated in detail. First, in the absence of randomization, the optimal prior probability distribution is analyzed for a given signal constellation and a closed-form solution is provided. Second, the optimal deterministic pair of prior probabilities and the corresponding signal levels are considered. Third, a binary communication system with scalar observations is investigated in the presence of a zero-mean additive white Gaussian noise, and the optimal solution is obtained under practical assumptions. Finally, numerical examples are presented to illustrate the theoretical results. It is observed that the proposed approach can provide improvements in terms of average symbol error rate over the classical scheme for certain scenarios.

Course

Other identifiers

Book Title

Degree Discipline

Degree Level

Degree Name

Citation

Published Version (Please cite this version)