Toeplitz operators on arveson and dirichlet spaces
Date
Authors
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
BUIR Usage Stats
views
downloads
Citation Stats
Series
Abstract
We define Toeplitz operators on all Dirichlet spaces on the unit ball of CN and develop their basic properties. We characterize bounded, compact, and Schatten-class Toeplitz operators with positive symbols in terms of Carleson measures and Berezin transforms. Our results naturally extend those known for weighted Bergman spaces, a special case applies to the Arveson space, and we recover the classical Hardy-space Toeplitz operators in a limiting case; thus we unify the theory of Toeplitz operators on all these spaces. We apply our operators to a characterization of bounded, compact, and Schatten-class weighted composition operators on weighted Bergman spaces of the ball. We lastly investigate some connections between Toeplitz and shift operators. © Birkhäuser Verlag Basel/Switzerland 2007.