SOS methods for stability analysis of neutral differential systems
Date
Authors
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
Print ISSN
Electronic ISSN
Publisher
Volume
Issue
Pages
Language
Type
Journal Title
Journal ISSN
Volume Title
Citation Stats
Attention Stats
Usage Stats
views
downloads
Series
Abstract
This paper gives a description of how "sum-of-squares" (SOS) techniques can be used to check frequency-domain conditions for the stability of neutral differential systems. For delay-dependent stability, we adapt an approach of Zhang et al. [10] and show how the associated conditions can be expressed as the infeasibility of certain semialgebraic sets. For delay-independent stability, we propose an alternative method of reducing the problem to infeasibility of certain semialgebraic sets. Then, using Positivstellensatz results from semi-algebraic geometry, we convert these infeasibility conditions to feasibility problems using sum-of-squares variables. By bounding the degree of the variables and using the Matlab toolbox SOSTOOLS [7], these conditions can be checked using semidefinite programming.