Integrable discrete systems on R and related dispersionless systems

dc.citation.epage072702-17en_US
dc.citation.issueNumber7en_US
dc.citation.spage072702-1en_US
dc.citation.volumeNumber49en_US
dc.contributor.authorBlaszak, M.en_US
dc.contributor.authorGurses, M.en_US
dc.contributor.authorSilindir, B.en_US
dc.contributor.authorSzablikowski, B. M.en_US
dc.date.accessioned2015-07-28T11:58:12Z
dc.date.available2015-07-28T11:58:12Z
dc.date.issued2008en_US
dc.departmentDepartment of Mathematicsen_US
dc.description.abstractA general framework for integrable discrete systems on ℝ, in particular, containing lattice soliton systems and their q-deformed analogs, is presented. The concept of regular grain structures on R, generated by discrete one-parameter groups of diffeomorphisms, in terms of which one can define algebra of shift operators is introduced. Two integrable hierarchies of discrete chains together with bi-Hamiltonian structures and their continuous limits are constructed. The inverse problem based on the deformation quantization scheme is considered. © 2008 American Institute of Physics.en_US
dc.description.provenanceMade available in DSpace on 2015-07-28T11:58:12Z (GMT). No. of bitstreams: 1 10.1063-1.2948962.pdf: 188243 bytes, checksum: a8bf610036385b49fd15bb1fae85f20c (MD5)en
dc.identifier.doi10.1063/1.2948962en_US
dc.identifier.issn0022-2488
dc.identifier.urihttp://hdl.handle.net/11693/11622
dc.language.isoEnglishen_US
dc.publisherAmerican Institute of Physicsen_US
dc.relation.isversionofhttp://dx.doi.org/10.1063/1.2948962en_US
dc.source.titleJournal of Mathematical Physicsen_US
dc.subjectQ-pseudodifferential Symbolsen_US
dc.subjectQ-analogen_US
dc.subjectHierarchiesen_US
dc.subjectAlgebraen_US
dc.subjectMatrixen_US
dc.subjectLimiten_US
dc.titleIntegrable discrete systems on R and related dispersionless systemsen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
10.1063-1.2948962.pdf
Size:
183.83 KB
Format:
Adobe Portable Document Format