Competitive and online piecewise linear classification

dc.citation.epage3456en_US
dc.citation.spage3452en_US
dc.contributor.authorÖzkan, Hüseyinen_US
dc.contributor.authorDonmez, M.A.en_US
dc.contributor.authorPelvan O.S.en_US
dc.contributor.authorAkman, A.en_US
dc.contributor.authorKozat, Süleyman S.en_US
dc.coverage.spatialVancouver, BC, Canadaen_US
dc.date.accessioned2016-02-08T12:06:53Z
dc.date.available2016-02-08T12:06:53Z
dc.date.issued2013en_US
dc.departmentDepartment of Electrical and Electronics Engineeringen_US
dc.descriptionDate of Conference: 26-31 May 2013en_US
dc.description.abstractIn this paper, we study the binary classification problem in machine learning and introduce a novel classification algorithm based on the 'Context Tree Weighting Method'. The introduced algorithm incrementally learns a classification model through sequential updates in the course of a given data stream, i.e., each data point is processed only once and forgotten after the classifier is updated, and asymptotically achieves the performance of the best piecewise linear classifiers defined by the 'context tree'. Since the computational complexity is only linear in the depth of the context tree, our algorithm is highly scalable and appropriate for real time processing. We present experimental results on several benchmark data sets and demonstrate that our method provides significant computational improvement both in the test (5 ∼ 35×) and training phases (40 ∼ 1000×), while achieving high classification accuracy in comparison to the SVM with RBF kernel. © 2013 IEEE.en_US
dc.description.provenanceMade available in DSpace on 2016-02-08T12:06:53Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 70227 bytes, checksum: 26e812c6f5156f83f0e77b261a471b5a (MD5) Previous issue date: 2013en
dc.identifier.doi10.1109/ICASSP.2013.6638299en_US
dc.identifier.urihttp://hdl.handle.net/11693/27965
dc.language.isoEnglishen_US
dc.publisherIEEEen_US
dc.relation.isversionofhttp://dx.doi.org/10.1109/ICASSP.2013.6638299en_US
dc.source.title2013 IEEE International Conference on Acoustics, Speech and Signal Processingen_US
dc.subjectClassificationen_US
dc.subjectCompetitiveen_US
dc.subjectContext treeen_US
dc.subjectLDAen_US
dc.subjectOnlineen_US
dc.subjectPiecewise linearen_US
dc.subjectCompetitiveen_US
dc.subjectContext treeen_US
dc.subjectLDAen_US
dc.subjectOnlineen_US
dc.subjectPiecewise linearen_US
dc.subjectAlgorithmsen_US
dc.subjectClassification (of information)en_US
dc.subjectData miningen_US
dc.subjectPiecewise linear techniquesen_US
dc.subjectSignal processingen_US
dc.subjectTrees (mathematics)en_US
dc.titleCompetitive and online piecewise linear classificationen_US
dc.typeConference Paperen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Competitive and online piecewise linear classification.pdf
Size:
424.08 KB
Format:
Adobe Portable Document Format
Description:
Full printable version