An Online Causal Inference Framework for Modeling and Designing Systems Involving User Preferences: A State-Space Approach

dc.citation.epage11en_US
dc.citation.spage1en_US
dc.citation.volumeNumber2017en_US
dc.contributor.authorDelibalta, I.en_US
dc.contributor.authorBaruh, L.en_US
dc.contributor.authorKozat, S. S.en_US
dc.date.accessioned2018-04-12T11:01:47Z
dc.date.available2018-04-12T11:01:47Z
dc.date.issued2017en_US
dc.departmentDepartment of Electrical and Electronics Engineeringen_US
dc.description.abstractWe provide a causal inference framework to model the effects of machine learning algorithms on user preferences. We then use this mathematical model to prove that the overall system can be tuned to alter those preferences in a desired manner. A user can be an online shopper or a social media user, exposed to digital interventions produced by machine learning algorithms. A user preference can be anything from inclination towards a product to a political party affiliation. Our framework uses a state-space model to represent user preferences as latent system parameters which can only be observed indirectly via online user actions such as a purchase activity or social media status updates, shares, blogs, or tweets. Based on these observations, machine learning algorithms produce digital interventions such as targeted advertisements or tweets. We model the effects of these interventions through a causal feedback loop, which alters the corresponding preferences of the user. We then introduce algorithms in order to estimate and later tune the user preferences to a particular desired form. We demonstrate the effectiveness of our algorithms through experiments in different scenarios. © 2017 Ibrahim Delibalta et al.en_US
dc.description.provenanceMade available in DSpace on 2018-04-12T11:01:47Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 179475 bytes, checksum: ea0bedeb05ac9ccfb983c327e155f0c2 (MD5) Previous issue date: 2017en
dc.identifier.doi10.1155/2017/1048385en_US
dc.identifier.issn2090-0147
dc.identifier.urihttp://hdl.handle.net/11693/37066
dc.language.isoEnglishen_US
dc.publisherHindawi Limiteden_US
dc.relation.isversionofhttp://dx.doi.org/10.1155/2017/1048385en_US
dc.source.titleJournal of Electrical and Computer Engineeringen_US
dc.subjectArtificial intelligenceen_US
dc.subjectEducationen_US
dc.subjectInference enginesen_US
dc.subjectLearning systemsen_US
dc.subjectOnline systemsen_US
dc.subjectPurchasingen_US
dc.subjectSocial networking (online)en_US
dc.subjectCausal inferencesen_US
dc.subjectDesigning systemsen_US
dc.subjectOnline shoppersen_US
dc.subjectPolitical partiesen_US
dc.subjectState - space modelsen_US
dc.subjectState space approachen_US
dc.subjectStatus updatesen_US
dc.subjectTargeted advertisementsen_US
dc.subjectLearning algorithmsen_US
dc.titleAn Online Causal Inference Framework for Modeling and Designing Systems Involving User Preferences: A State-Space Approachen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
An Online Causal Inference Framework for Modeling and Designing Systems Involving User Preferences A State-Space Approach.pdf
Size:
1.58 MB
Format:
Adobe Portable Document Format
Description:
Full printable version