Geodesics of three-dimensional walker manifolds

buir.advisorÜnal, Bülent
dc.contributor.authorBüyükbaş Çakar, Gökçen
dc.date.accessioned2016-07-21T13:43:57Z
dc.date.available2016-07-21T13:43:57Z
dc.date.copyright2016-07
dc.date.issued2016-07
dc.date.submitted2016-07-20
dc.descriptionCataloged from PDF version of article.en_US
dc.descriptionThesis (M.S.): Bilkent University, Department of Mathematics, İhsan Doğramacı Bilkent University, 2016.en_US
dc.descriptionIncludes bibliographical references (leaves 42-43).en_US
dc.description.abstractWe review some basic facts of Lorentzian geometry including causality and geodesic completeness. We depict the properties of curves and planes in threedimensional Minkowski space. We deffne the Walker manifolds, that is, a Lorentzian manifold which admits a parallel degenerate distribution. We calculate the Christoffel symbols and Levi-Civita connection components, Riemann curvature and Ricci curvature components for an arbitrary three-dimensional Walker manifold and strictly Walker manifold. Finally, we derive the geodesic equations of a three-dimensional Walker manifold and investigate the geodesic curves in it, particularly the ones with a constant component. We prove that any straight line with a constant third component is a geodesic in any Walker manifold with the causality depending on its second component. We prove that the existence of a geodesic in a Walker manifold with a linear third component implies that the manifold is strict. We also show that any three-dimensional Walker manifold is geodesically complete.en_US
dc.description.provenanceSubmitted by Betül Özen (ozen@bilkent.edu.tr) on 2016-07-21T13:43:57Z No. of bitstreams: 1 10118521.pdf: 326620 bytes, checksum: 4982c95f471cce667c5f8e95a8b6e58e (MD5)en
dc.description.provenanceMade available in DSpace on 2016-07-21T13:43:57Z (GMT). No. of bitstreams: 1 10118521.pdf: 326620 bytes, checksum: 4982c95f471cce667c5f8e95a8b6e58e (MD5) Previous issue date: 2016-07en
dc.description.statementofresponsibilityby Gökçen Büyükbaş Çakar.en_US
dc.format.extentvii, 43 leaves.en_US
dc.identifier.itemidB153650
dc.identifier.urihttp://hdl.handle.net/11693/30154
dc.language.isoEnglishen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectWalker manifolden_US
dc.subjectLorentzian manifolden_US
dc.subjectGeodesicen_US
dc.titleGeodesics of three-dimensional walker manifoldsen_US
dc.title.alternativeÜç boyutlu walker manifoldlarda jeodezikleren_US
dc.typeThesisen_US
thesis.degree.disciplineMathematics
thesis.degree.grantorBilkent University
thesis.degree.levelMaster's
thesis.degree.nameMS (Master of Science)

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
10118521.pdf
Size:
318.96 KB
Format:
Adobe Portable Document Format
Description:
Full printable version

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: