Electromagnetic imaging of three-dimensional conducting objects using the Newton minimization approach

Date

2013

Editor(s)

Advisor

Gürel, Levent

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

Print ISSN

Electronic ISSN

Publisher

Volume

Issue

Pages

Language

English

Type

Journal Title

Journal ISSN

Volume Title

Attention Stats
Usage Stats
2
views
4
downloads

Series

Abstract

The main goal of shape reconstruction is to retrieve the location and shape of an unknown target. This approach is used in a wide range of areas, from detecting cancer tumors to finding buried objects. Various methods can be applied to detect objects in different applications. One of the important challenges in many of these methods is to solve the non-linearity and non-uniqueness of the solutions. Inverse scattering is one of the most efficient ways to retrieve shapes and locations of targets. By illuminating the objects with electromagnetic waves and collecting the scattering fields using appropriate methods, we try to obtain the shape of unknown object. To achieve this goal, we start with an initial guess of the unknown object, then by comparing the scattered far-field patterns of the guess and the real object, we evolve that object and update it iteratively such that we decrease the difference between the patterns and finally achieve the shape of the unknown object. In this thesis, we model the object by one of its parameters, such as the location of the nodes on the surface of the object, or by the conductivity, permittivity, and permeability of the discretized space in which the object is placed. Then, the model parameters are updated iteratively by minimizing the mismatch between the measured data of the target and the collected data from the modeled object. Using surface nodes to model a three-dimensional object is a good choice because we decrease the number of unknowns.

Course

Other identifiers

Book Title

Degree Discipline

Electrical and Electronic Engineering

Degree Level

Master's

Degree Name

MS (Master of Science)

Citation

Published Version (Please cite this version)