Decentralized dynamic rate and channel selection over a shared spectrum

buir.contributor.authorJavanmardi, Alireza J
buir.contributor.authorQureshi, Muhammad Anjum
buir.contributor.authorTekin, Cem
buir.contributor.orcidJavanmardi, Alireza|0000-0002-4901-5989
buir.contributor.orcidQureshi, Muhammad Anjum|0000-0001-6426-1267
buir.contributor.orcidTekin, Cem|0000-0003-4361-4021
dc.citation.epage3801en_US
dc.citation.issueNumber6en_US
dc.citation.spage3787 -en_US
dc.citation.volumeNumber69en_US
dc.contributor.authorJavanmardi, Alireza
dc.contributor.authorQureshi, Muhammad Anjum
dc.contributor.authorTekin, Cem
dc.date.accessioned2022-01-28T06:50:42Z
dc.date.available2022-01-28T06:50:42Z
dc.date.issued2021-03-15
dc.departmentDepartment of Electrical and Electronics Engineeringen_US
dc.description.abstractWe consider the problem of distributed dynamic rate and channel selection in a multi-user network, in which each user selects a wireless channel and a modulation and coding scheme (corresponds to a transmission rate) in order to maximize the network throughput. We assume that the users are cooperative, however, there is no coordination and communication among them, and the number of users in the system is unknown. We formulate this problem as a multi-player multi-armed bandit problem and propose a decentralized learning algorithm that performs almost optimal exploration of the transmission rates to learn fast. We prove that the regret of our learning algorithm with respect to the optimal allocation increases logarithmically over rounds with a leading term that is logarithmic in the number of transmission rates. Finally, we compare the performance of our learning algorithm with the state-of-the-art via simulations and show that it substantially improves the throughput and minimizes the number of collisions.en_US
dc.identifier.doi10.1109/TCOMM.2021.3066002en_US
dc.identifier.eissn1558-0857
dc.identifier.issn0090-6778
dc.identifier.urihttp://hdl.handle.net/11693/76854
dc.language.isoEnglishen_US
dc.publisherIEEEen_US
dc.relation.isversionofhttps://doi.org/10.1109/TCOMM.2021.3066002en_US
dc.source.titleIEEE Transactions on Communicationsen_US
dc.subjectCognitive radioen_US
dc.subjectDecentralized algorithmsen_US
dc.subjectMulti-armed banditsen_US
dc.subjectRegret boundsen_US
dc.titleDecentralized dynamic rate and channel selection over a shared spectrumen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Decentralized_dynamic_rate_and_channel_selection_over_a_shared_spectrum.pdf
Size:
1.82 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.69 KB
Format:
Item-specific license agreed upon to submission
Description: