Dade groups for finite groups and dimension functions

Available
The embargo period has ended, and this item is now available.

Date

2021-06-15

Editor(s)

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

BUIR Usage Stats
1
views
3
downloads

Citation Stats

Series

Abstract

Let G be a finite group and k an algebraically closed field of characteristic p > 0. We define the notion of a Dade kG-module as a generalization of endo-permutation modules for p-groups. We show that under a suitable equivalence relation, the set of equivalence classes of Dade kG-modules forms a group under tensor product, and the group obtained this way is isomorphic to the Dade group D(G) defined by Lassueur. We also consider the subgroup DΩ(G) of D(G) generated by relative syzygies ΩX , where X is a finite G-set. If C(G, p) denotes the group of superclass functions defined on the p-subgroups of G, there are natural generators ωX of C(G, p), and we prove the existence of a well-defined group homomorphism ΨG : C(G, p) → DΩ(G) that sends ωX to ΩX . The main theorem of the paper is the verification that the subgroup of C(G, p) consisting of the dimension functions of k-orientable real representations of G lies in the kernel of ΨG.

Source Title

Journal of Algebra

Publisher

Academic Press

Course

Other identifiers

Book Title

Degree Discipline

Degree Level

Degree Name

Citation

Published Version (Please cite this version)

Language

English