Structural and electronic properties of carbon-based materials

Date

2000

Editor(s)

Advisor

Çıracı, Salim

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

Print ISSN

Electronic ISSN

Publisher

Volume

Issue

Pages

Language

English

Journal Title

Journal ISSN

Volume Title

Series

Abstract

In this thesis, some carbon-based materials in nano scale have been investigated by using first-principles methods as well as transferable tight-binding and empirical potential models. The focus of interest has been in the cubane molecule among cage-like structures and in the carbon nanotubes among graphite-related materials. The first-principles calculations predict that cubane-like structures can exist for other group IV elements such as Si and Ge. The energetics and dynamics of such molecules has been studied. By performing quantum molecular dynamics simulations at high temperature a deformation path from cubane to cyclooctatetraene has been established. For solid cubane the structural and electronic properties and doping by alkali metal atoms have been studied. In the study of carbon nanotubes under pressure some new carbon forms due to covalent bonding between the neighboring tubes has been identified. It has been shown that the electronic structure of single wall carbon nanotubes is affected by radial deformations. For example, some zigzag nanotubes have been found to experience semiconductor-to-metal transition as a result of compression. Exploiting this property, it has been shown that variable and reversible quantum structures can be realized on a single carbon nanotube. Finally, other quantum structures which can lead to novel nano-scale molecular devices have been proposed.

Course

Other identifiers

Book Title

Degree Discipline

Physics

Degree Level

Doctoral

Degree Name

Ph.D. (Doctor of Philosophy)

Citation

Published Version (Please cite this version)