Simulation of an FPGA implementation of holographic video generation in real time
Date
Authors
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
Print ISSN
Electronic ISSN
Publisher
Volume
Issue
Pages
Language
Type
Journal Title
Journal ISSN
Volume Title
Attention Stats
Usage Stats
views
downloads
Series
Abstract
Holography is a promising method for three-dimensional vision. Different research efforts are being spent to improve generation of holograms and image reconstruction from holograms. A computer generated hologram can be a precise method of generating a real like video in the future. RayleighSommerfeld diffraction method and Fresnel-Kirchhoff diffraction formula are two algorithms suitable for FPGA implementation of hologram calculation. Simulator image reconstructions and optical image reconstructions with spatial light modulator using the generated holograms are compared and it is seen that they are quite similar. A field programmable gate array (FPGA) implementation of real time holographic video generation based on Rayleigh-Sommerfeld formulation is simulated. FPGA implementation is tested and verified by a computer simulator. An FPGA board capable of capturing video input and giving video output for spatial light modulator (SLM) is chosen as the implementation platform for simulations. A small size hologram calculator can be implemented on the FPGA board. A custom board for specific hologram calculation algorithm can be designed to increase the performance. Pipelined architecture and SDRAM memories can be used to increase the performance.