Error control of multiple-precision MLFMA

Date

2018

Editor(s)

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

BUIR Usage Stats
1
views
12
downloads

Citation Stats

Series

Abstract

We introduce and demonstrate a new error control scheme for the computation of far-zone interactions in the multilevel fast multipole algorithm when implemented within a multiple-precision arithmetic framework. The proposed scheme provides the optimum truncation numbers as well as the machine precisions given the desired relative error thresholds and the box sizes for the translation operator at all frequencies. In other words, unlike the previous error control schemes which are valid only for high-frequency problems, the proposed scheme can be used to control the error across both low- A nd high-frequency problems. Optimum truncation numbers and machine precisions are calculated for a wide range of box sizes and desired relative error thresholds with the proposed error control scheme. The results are compared with the previously available methods and numerical surveys.

Source Title

IEEE Transactions on Antennas and Propagation

Publisher

Institute of Electrical and Electronics Engineers

Course

Other identifiers

Book Title

Degree Discipline

Degree Level

Degree Name

Citation

Published Version (Please cite this version)

Language

English