Decomposing modular coinvariants
dc.citation.epage | 92 | en_US |
dc.citation.spage | 87 | en_US |
dc.citation.volumeNumber | 423 | en_US |
dc.contributor.author | Sezer, M. | en_US |
dc.date.accessioned | 2016-02-08T10:02:35Z | |
dc.date.available | 2016-02-08T10:02:35Z | |
dc.date.issued | 2015 | en_US |
dc.department | Department of Mathematics | en_US |
dc.description.abstract | We consider the ring of coinvariants for a modular representation of a cyclic group of prime order p. We show that the classes of the terminal variables in the coinvariants have nilpotency degree p and that the coinvariants are a free module over the subalgebra generated by these classes. An incidental result we have is a description of a Gröbner basis for the Hilbert ideal and a decomposition of the corresponding monomial basis for the coinvariants with respect to the monomials in the terminal variables. © 2014 Elsevier Inc. | en_US |
dc.identifier.doi | 10.1016/j.jalgebra.2014.08.059 | en_US |
dc.identifier.eissn | 1090-266X | |
dc.identifier.issn | 0021-8693 | |
dc.identifier.uri | http://hdl.handle.net/11693/22625 | |
dc.language.iso | English | en_US |
dc.publisher | Elsevier | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1016/j.jalgebra.2014.08.059 | en_US |
dc.source.title | Journal of Algebra | en_US |
dc.subject | Coinvariants | en_US |
dc.subject | Modular actions | en_US |
dc.title | Decomposing modular coinvariants | en_US |
dc.type | Article | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Decomposing modular coinvariants.pdf
- Size:
- 247.44 KB
- Format:
- Adobe Portable Document Format
- Description:
- Full printable version