The use of curl-conforming basis functions for the magnetic-field integral equation

Date

2006

Editor(s)

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

BUIR Usage Stats
3
views
17
downloads

Citation Stats

Series

Abstract

Divergence-conforming Rao-Wilton-Glisson (RWG) functions are commonly used in integral-equation formulations to model the surface current distributions on planar triangulations. In this paper, a novel implementation of the magnetic-field integral equation (MFIE) employing the curl-conforming n̂ × RWG basis and testing functions is introduced for improved current modelling. Implementation details are outlined in the contexts of the method of moments, the fast multipole method, and the multilevel fast multipole algorithm. Based on the examples of electromagnetic modelling of conducting scatterers, it is demonstrated that significant improvement in the accuracy of the MFIE can be obtained by using the curl-conforming n̂ × RWG functions.

Source Title

IEEE Transactions on Antennas and Propagation

Publisher

Institute of Electrical and Electronics Engineers

Course

Other identifiers

Book Title

Degree Discipline

Degree Level

Degree Name

Citation

Published Version (Please cite this version)

Language

English