Nonequilibrium electron relaxation in graphene

buir.contributor.authorRani, Luxmi
dc.citation.epage14en_US
dc.citation.issueNumber17en_US
dc.citation.spage1en_US
dc.citation.volumeNumber33en_US
dc.contributor.authorRani, Luxmien_US
dc.contributor.authorBhalla, P.en_US
dc.contributor.authorSingh, N.en_US
dc.date.accessioned2020-02-24T13:10:45Z
dc.date.available2020-02-24T13:10:45Z
dc.date.issued2019
dc.departmentDepartment of Physicsen_US
dc.description.abstractWe apply memory function formalism to investigate nonequilibrium electron relaxation in graphene. Within the premises of two-temperature model (TTM), explicit expressions of the imaginary part of the memory function or generalized Drude scattering rate (1/ττ) are obtained. In the DC limit and in equilibrium case where electron temperature (Te) is equal to phonon temperature (T), we reproduce the known results (i.e., 1/τ∝τ∝T4 when T≪ΘBG≪ΘBG and 1/τ∝τ∝T when T≫ΘBG≫ΘBG, where ΘBGΘBG is the Bloch–Grüneisen temperature). We report several new results for 1/ττ where T≠≠Te relevant in pump–probe spectroscopic experiments. In the finite-frequency regime we find that 1/τ∝ω2τ∝ω2 when ω≪ωBGω≪ωBG, and for ω=ωBGω=ωBG it is ωω-independent. These results can be verified in a typical pump–probe experimental setting for graphene.en_US
dc.identifier.doi10.1142/S0217979219501832en_US
dc.identifier.issn0217-9792
dc.identifier.urihttp://hdl.handle.net/11693/53484
dc.language.isoEnglishen_US
dc.publisherWorld Scientific Publishingen_US
dc.relation.isversionofhttps://dx.doi.org/10.1142/S0217979219501832en_US
dc.source.titleInternational Journal of Modern Physics Ben_US
dc.subjectGrapheneen_US
dc.subjectElectronic transport in grapheneen_US
dc.subjectConductivity of specific materialen_US
dc.subjectMemory function formalismen_US
dc.subjectNonequilibrium electron relaxationen_US
dc.titleNonequilibrium electron relaxation in grapheneen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Nonequilibrium_electron_relaxation_in_graphene.pdf
Size:
572.88 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: