An analysis for the broad-band absorption enhancement using plasmonic structures on uncooled infrared detector pixels

buir.contributor.authorOkyay, Ali Kemal
dc.citation.volumeNumber8353en_US
dc.contributor.authorLüleç, S. Z.en_US
dc.contributor.authorKüçük, S. E.en_US
dc.contributor.authorBattal, Enesen_US
dc.contributor.authorOkyay, Ali Kemalen_US
dc.contributor.authorTanrıkulu, M. Y.en_US
dc.contributor.authorAkın, T.en_US
dc.coverage.spatialBaltimore, Maryland, United Statesen_US
dc.date.accessioned2016-02-08T12:14:58Z
dc.date.available2016-02-08T12:14:58Z
dc.date.issued2012-05en_US
dc.departmentDepartment of Electrical and Electronics Engineeringen_US
dc.descriptionConference Name: SPIE Defense, Security, and Sensing, 2012
dc.descriptionDate of Conference: 31 May 2012
dc.description.abstractThis paper introduces an analysis on the absorption enhancement in uncooled infrared pixels using resonant plasmon modes in metal structures, and it reports, for the first time in literature, broad-band absorption enhancement using integrated plasmonic structures in microbolometers for unpolarized long-wave IR detection. Different plasmonic structures are designed and simulated on a stack of layers, namely gold, polyimide, and silicon nitride in order to enhance absorption at the long-wave infrared. The simulated structures are fabricated, and the reflectance measurements are conducted using an FTIR Ellipsometer in the 8-12 μm wavelength range. Finite difference time domain (FDTD) simulations are compared to experimental measurement results. Computational and experimental results show similar spectral reflection trends, verifying broad-band absorption enhancement in the spectral range of interest. Moreover, this paper computationally investigates pixel-wise absorption enhancement by plasmonic structures integrated with microbolometer pixels using the FDTD method. Special attention is given during the design to be able to implement the integrated plasmonic structures with the microbolometers without a need to modify the pre-determined microbolometer process flow. The optimized structure with plasmonic layer absorbs 84 % of the unpolarized radiation in the 8-12 μm spectral range on the average, which is a 22 % increase compared to a reference structure with no plasmonic design. Further improvement may be possible by designing multiply coupled resonant structures.en_US
dc.description.provenanceMade available in DSpace on 2016-02-08T12:14:58Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 70227 bytes, checksum: 26e812c6f5156f83f0e77b261a471b5a (MD5) Previous issue date: 2012en
dc.identifier.doi10.1117/12.964549en_US
dc.identifier.issn0277-786X
dc.identifier.urihttp://hdl.handle.net/11693/28237
dc.language.isoEnglishen_US
dc.publisherSPIEen_US
dc.relation.isversionofhttps://doi.org/10.1117/12.964549en_US
dc.source.titleProceedings of SPIE - The International Society for Optical Engineeringen_US
dc.subjectAbsorption enhancementen_US
dc.subjectInfra-red imagingen_US
dc.subjectMicrobolometeren_US
dc.subjectSurface plasmon polaritonsen_US
dc.subjectBolometersen_US
dc.subjectElectromagnetic wave polarizationen_US
dc.subjectFinite difference time domain methoden_US
dc.subjectFourier transform infrared spectroscopyen_US
dc.subjectInfrared imagingen_US
dc.subjectInfrared radiationen_US
dc.subjectPlasmonsen_US
dc.subjectSilicon nitrideen_US
dc.subjectTemperature sensorsen_US
dc.subjectFinite-difference time-domain simulationen_US
dc.subjectMicrobolometeren_US
dc.subjectOptimized structuresen_US
dc.subjectResonant plasmon modesen_US
dc.subjectSurface plasmon polaritonsen_US
dc.subjectUncooled infrared detectorsen_US
dc.subjectUnpolarized radiationen_US
dc.subjectPixelsen_US
dc.titleAn analysis for the broad-band absorption enhancement using plasmonic structures on uncooled infrared detector pixelsen_US
dc.typeConference Paperen_US

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
An_analysis_for_the_broad-band_absorption_enhancement_using_plasmonic_structures_on_uncooled_infrared_detector_pixels.pdf
Size:
1.21 MB
Format:
Adobe Portable Document Format
Description:
View / Download