Distributed online learning via cooperative contextual bandits

Date

2015-07-15

Authors

Tekin, C.
Schaar, Mihaela van der

Editor(s)

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

IEEE Transactions on Signal Processing

Print ISSN

1053-587X

Electronic ISSN

1941-0476

Publisher

Institute of Electrical and Electronics Engineers

Volume

63

Issue

14

Pages

3700 - 3714

Language

English

Journal Title

Journal ISSN

Volume Title

Citation Stats
Attention Stats
Usage Stats
1
views
18
downloads

Series

Abstract

In this paper, we propose a novel framework for decentralized, online learning by many learners. At each moment of time, an instance characterized by a certain context may arrive to each learner; based on the context, the learner can select one of its own actions (which gives a reward and provides information) or request assistance from another learner. In the latter case, the requester pays a cost and receives the reward but the provider learns the information. In our framework, learners are modeled as cooperative contextual bandits. Each learner seeks to maximize the expected reward from its arrivals, which involves trading off the reward received from its own actions, the information learned from its own actions, the reward received from the actions requested of others and the cost paid for these actions—taking into account what it has learned about the value of assistance from each other learner. We develop distributed online learning algorithms and provide analytic bounds to compare the efficiency of these with algorithms with the complete knowledge (oracle) benchmark (in which the expected reward of every action in every context is known by every learner). Our estimates show that regret—the loss incurred by the algorithm—is sublinear in time. Our theoretical framework can be used in many practical applications including Big Data mining, event detection in surveillance sensor networks and distributed online recommendation systems.

Course

Other identifiers

Book Title

Degree Discipline

Degree Level

Degree Name

Citation

Published Version (Please cite this version)