Self-assembly of peptide nanofibers and their mechanical properties
Date
Authors
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
Print ISSN
Electronic ISSN
Publisher
Volume
Issue
Pages
Language
Type
Journal Title
Journal ISSN
Volume Title
Attention Stats
Usage Stats
views
downloads
Series
Abstract
Peptide nanofibers have been drawing attention because of their versatile, tailorable and functional properties in various research areas. The self-assembly mechanism of peptides and peptide amphiphile molecules is generally based on noncovalent interactions like hydrophobic, electrostatic and metal-ligand interactions. In this thesis, I investigated hydrophobic interaction of peptide amphiphiles (PAs) with other hydrophobic molecules and effect of pH change on self-assembly mechanism. The zinc phthalocyanine molecule was used as a hydrophobic probe to be encapsulated by peptide amphiphile molecules, which help to dissolve the molecule in water instead of an organic solvent. Charge neutralization of PAs by pH change led to nanofiber formation, which resulted in encapsulation and organization of zinc phthalocyanine molecules. The degree of self-assembly by pH change determined non-linear optical properties of zinc phthalocyanine molecule. Besides, morphological, mechanical and spectroscopic properties of phthalocyanine containing peptide nanofibers were characterized by TEM, SEM, oscillatory rheology, UV-Vis, fluorescence and circular dichroism spectroscopy. The mechanical properties of peptide and PA hydrogels and nanofibers have an essential place to determine applicability in different areas. Especially, PA and peptide molecules have been widely used in regenerative medicine studies and the stiffness of the extracellular matrix has a significant role on cellular behavior. In this thesis, viscoelastic properties of the peptide and PA gels were studied by oscillatory rheology. In addition to characterization of bulk mechanical properties of peptide gels, adhesion and stiffness of peptide nanofibers were determined by Atomic Force Microscopy.