Mixture of set membership filters approach for big data signal processing
dc.citation.epage | 1220 | en_US |
dc.citation.spage | 1217 | en_US |
dc.contributor.author | Kılıç, O. Fatih | en_US |
dc.contributor.author | Sayın, M. Ömer | en_US |
dc.contributor.author | Delibalta, İ. | en_US |
dc.contributor.author | Kozat, Süleyman Serdar | en_US |
dc.coverage.spatial | Zonguldak, Turkey | en_US |
dc.date.accessioned | 2018-04-12T11:48:31Z | |
dc.date.available | 2018-04-12T11:48:31Z | |
dc.date.issued | 2016 | en_US |
dc.department | Department of Electrical and Electronics Engineering | en_US |
dc.description | Date of Conference: 16-19 May 2016 | en_US |
dc.description | Conference Name: IEEE 24th Signal Processing and Communications Applications Conference, SIU 2016 | en_US |
dc.description.abstract | In this work, we propose a new approach for mixture of adaptive filters based on set-membership filters (SMF) which is specifically designated for big data signal processing applications. By using this approach, we achieve significantly reduced computational load for the mixture methods with better performance in convergence rate and steady-state error with respect to conventional mixture methods. Finally, we approve these statements with the simulations done on produce data. | en_US |
dc.description.provenance | Made available in DSpace on 2018-04-12T11:48:31Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 179475 bytes, checksum: ea0bedeb05ac9ccfb983c327e155f0c2 (MD5) Previous issue date: 2016 | en |
dc.identifier.doi | 10.1109/SIU.2016.7495965 | en_US |
dc.identifier.uri | http://hdl.handle.net/11693/37703 | |
dc.language.iso | Turkish | en_US |
dc.publisher | IEEE | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1109/SIU.2016.7495965 | en_US |
dc.source.title | Proceedings of the IEEE 24th Signal Processing and Communications Applications Conference, SIU 2016 | en_US |
dc.subject | Affine combination | en_US |
dc.subject | Big data | en_US |
dc.subject | Computational efficiency | en_US |
dc.subject | Convex combination | en_US |
dc.subject | Mixture of experts | en_US |
dc.subject | Set-membership filtering | en_US |
dc.title | Mixture of set membership filters approach for big data signal processing | en_US |
dc.title.alternative | Büyük veri sinyal işlemesi için küme üyeliği süzgeç birleşimi yaklaşımı | en_US |
dc.type | Conference Paper | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Mixture of set membership filters approach for big data signal processing [Btiytik Veri Sinyal Ilemesi için Ktime Uyeligi Stizgeç Birlesimi Yaklasimi].pdf
- Size:
- 526.05 KB
- Format:
- Adobe Portable Document Format
- Description:
- Full printable version