COST292 experimental framework for TRECVID 2006
Date
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
BUIR Usage Stats
views
downloads
Series
Abstract
In this paper we give an overview of the four TRECVID tasks submitted by COST292, European network of institutions in the area of semantic multimodal analysis and retrieval of digital video media. Initially, we present shot boundary evaluation method based on results merged using a confidence measure. The two SB detectors user here are presented, one of the Technical University of Delft and one of the LaBRI, University of Bordeaux 1, followed by the description of the merging algorithm. The high-level feature extraction task comprises three separate systems. The first system, developed by the National Technical University of Athens (NTUA) utilises a set of MPEG-7 low-level descriptors and Latent Semantic Analysis to detect the features. The second system, developed by Bilkent University, uses a Bayesian classifier trained with a "bag of subregions" for each keyframe. The third system by the Middle East Technical University (METU) exploits textual information in the video using character recognition methodology. The system submitted to the search task is an interactive retrieval application developed by Queen Mary, University of London, University of Zilina and ITI from Thessaloniki, combining basic retrieval functionalities in various modalities (i.e. visual, audio, textual) with a user interface supporting the submission of queries using any combination of the available retrieval tools and the accumulation of relevant retrieval results over all queries submitted by a single user during a specified time interval. Finally, the rushes task submission comprises a video summarisation and browsing system specifically designed to intuitively and efficiently presents rushes material in video production environment. This system is a result of joint work of University of Bristol, Technical University of Delft and LaBRI, University of Bordeaux 1.