MEMS based ultrasonic gas sensor with universal sensing capability

Available
The embargo period has ended, and this item is now available.

Date

2023-09

Editor(s)

Advisor

Tatar, Erdinç

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

Print ISSN

Electronic ISSN

Publisher

Volume

Issue

Pages

Language

English

Type

Journal Title

Journal ISSN

Volume Title

Attention Stats
Usage Stats
57
views
18
downloads

Series

Abstract

Gas sensors are a critical technology for life safety, process control, and most recently air quality measurements. Currently utilized gas sensing technologies need to be tailored to each specific gas, using either a chemically reactive substrate or an optical detector sensitive to certain gas types, providing very good selectivity at the expense of flexibility. In contrast, acoustic sensors promise a potentially universal method of gas sensing with lower selectivity, by measuring the speed of sound in a resonant cavity and inferring the gas content. In this work, a proof of concept for a MEMS based acoustic gas sensor is proposed. A horizontal cavity allows for a compact design, compared to vertical designs shown in the literature. Fabrication is simplified compared to existing CMUT/PMUT designs by using electrically tunable in-plane resonators as transducers. Fabrication of the designed sensor is carried out using an in-house developed SOI-MEMS process, while acoustic cavities are fabricated from silicon. During operation, one resonator excites the cavity while the other resonator measures the response. Frequency sweeps of the resonators while varying the tuning allows full characterization of device response. Overlaying sweeps at different tuning parameters reveals the cavity response, while testing with no cavity rules out parasitic effects. Both speed of sound and quality factor are observed, which can be used to improve selectivity in gas mixtures. The proof of concept device is tested in ambient air, measuring the speed of sound in air as 342 m/s, consistent with the literature and with external measurements.

Course

Other identifiers

Book Title

Degree Discipline

Electrical and Electronic Engineering

Degree Level

Master's

Degree Name

MS (Master of Science)

Citation

Published Version (Please cite this version)