Hybrid parallelization of Stochastic Gradient Descent
Date
Authors
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
BUIR Usage Stats
views
downloads
Series
Abstract
The purpose of this study is to investigate the efficient parallelization of the Stochastic Gradient Descent (SGD) algorithm for solving the matrix comple-tion problem on a high-performance computing (HPC) platform in distributed memory setting. We propose a hybrid parallel decentralized SGD framework with asynchronous communication between processors to show the scalability of parallel SGD up to hundreds of processors. We utilize Message Passing In-terface (MPI) for inter-node communication and POSIX threads for intra-node parallelism. We tested our method by using four different real-world benchmark datasets. Experimental results show that the proposed algorithm yields up to 6× better throughput on relatively sparse datasets, and displays comparable perfor-mance to available state-of-the-art algorithms on relatively dense datasets while providing a flexible partitioning scheme and a highly scalable hybrid parallel ar-chitecture.