Hybrid parallelization of Stochastic Gradient Descent

Available
The embargo period has ended, and this item is now available.

Date

2022-02

Editor(s)

Advisor

Aykanat, Cevdet

Supervisor

Co-Advisor

Co-Supervisor

Instructor

BUIR Usage Stats
14
views
21
downloads

Series

Abstract

The purpose of this study is to investigate the efficient parallelization of the Stochastic Gradient Descent (SGD) algorithm for solving the matrix comple-tion problem on a high-performance computing (HPC) platform in distributed memory setting. We propose a hybrid parallel decentralized SGD framework with asynchronous communication between processors to show the scalability of parallel SGD up to hundreds of processors. We utilize Message Passing In-terface (MPI) for inter-node communication and POSIX threads for intra-node parallelism. We tested our method by using four different real-world benchmark datasets. Experimental results show that the proposed algorithm yields up to 6× better throughput on relatively sparse datasets, and displays comparable perfor-mance to available state-of-the-art algorithms on relatively dense datasets while providing a flexible partitioning scheme and a highly scalable hybrid parallel ar-chitecture.

Source Title

Publisher

Course

Other identifiers

Book Title

Degree Discipline

Computer Engineering

Degree Level

Master's

Degree Name

MS (Master of Science)

Citation

Published Version (Please cite this version)

Language

English

Type