Estimating distributions varying in time in a universal manner
dc.contributor.author | Gökçesu, Kaan | en_US |
dc.contributor.author | Manış, Eren | en_US |
dc.contributor.author | Kurt, Ali Emirhan | en_US |
dc.contributor.author | Yar, Ersin | en_US |
dc.coverage.spatial | Antalya, Turkey | en_US |
dc.date.accessioned | 2018-04-12T11:44:38Z | |
dc.date.available | 2018-04-12T11:44:38Z | |
dc.date.issued | 2017 | en_US |
dc.department | Department of Electrical and Electronics Engineering | en_US |
dc.description | Date of Conference: 15-18 May 2017 | en_US |
dc.description | Conference Name: IEEE 25th Signal Processing and Communications Applications Conference, SIU 2017 | en_US |
dc.description.abstract | We investigate the estimation of distributions with time-varying parameters. We introduce an algorithm that achieves the optimal negative likelihood performance against the true probability distribution. We achieve this optimum regret performance without any knowledge about the total change of the parameters of true distribution. Our results are guaranteed to hold in an individual sequence manner such that we have no assumptions on the underlying sequences. Apart from the regret bounds, through synthetic and real life experiments, we demonstrate substantial performance gains with respect to the state-of-the-art probability density estimation algorithms in the literature. | en_US |
dc.description.provenance | Made available in DSpace on 2018-04-12T11:44:38Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 179475 bytes, checksum: ea0bedeb05ac9ccfb983c327e155f0c2 (MD5) Previous issue date: 2017 | en |
dc.identifier.doi | 10.1109/SIU.2017.7960588 | en_US |
dc.identifier.uri | http://hdl.handle.net/11693/37584 | |
dc.language.iso | Turkish | en_US |
dc.publisher | IEEE | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1109/SIU.2017.7960588 | en_US |
dc.source.title | Proceedings of the IEEE 25th Signal Processing and Communications Applications Conference, SIU 2017 | en_US |
dc.subject | Exponential family | en_US |
dc.subject | Individual sequence manner | en_US |
dc.subject | Nonstationary source | en_US |
dc.subject | Sequential density estimation | en_US |
dc.subject | Probability density function | en_US |
dc.subject | Density estimation | en_US |
dc.subject | Estimation of distributions | en_US |
dc.subject | Probability density estimation | en_US |
dc.subject | Time varying parameter | en_US |
dc.subject | Probability distributions | en_US |
dc.title | Estimating distributions varying in time in a universal manner | en_US |
dc.title.alternative | Zamanla değişen dağılımların evrensel tahmini | en_US |
dc.type | Conference Paper | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Estimating distributions varying in time in a universal manner [Zamanla Deǧişen Daǧilimlarin Evrensel Tahmini].pdf
- Size:
- 312.63 KB
- Format:
- Adobe Portable Document Format
- Description:
- Full Printable Version