Estimating distributions varying in time in a universal manner

dc.contributor.authorGökçesu, Kaanen_US
dc.contributor.authorManış, Erenen_US
dc.contributor.authorKurt, Ali Emirhanen_US
dc.contributor.authorYar, Ersinen_US
dc.coverage.spatialAntalya, Turkeyen_US
dc.date.accessioned2018-04-12T11:44:38Z
dc.date.available2018-04-12T11:44:38Z
dc.date.issued2017en_US
dc.departmentDepartment of Electrical and Electronics Engineeringen_US
dc.descriptionDate of Conference: 15-18 May 2017en_US
dc.descriptionConference Name: IEEE 25th Signal Processing and Communications Applications Conference, SIU 2017en_US
dc.description.abstractWe investigate the estimation of distributions with time-varying parameters. We introduce an algorithm that achieves the optimal negative likelihood performance against the true probability distribution. We achieve this optimum regret performance without any knowledge about the total change of the parameters of true distribution. Our results are guaranteed to hold in an individual sequence manner such that we have no assumptions on the underlying sequences. Apart from the regret bounds, through synthetic and real life experiments, we demonstrate substantial performance gains with respect to the state-of-the-art probability density estimation algorithms in the literature.en_US
dc.description.provenanceMade available in DSpace on 2018-04-12T11:44:38Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 179475 bytes, checksum: ea0bedeb05ac9ccfb983c327e155f0c2 (MD5) Previous issue date: 2017en
dc.identifier.doi10.1109/SIU.2017.7960588en_US
dc.identifier.urihttp://hdl.handle.net/11693/37584
dc.language.isoTurkishen_US
dc.publisherIEEEen_US
dc.relation.isversionofhttp://dx.doi.org/10.1109/SIU.2017.7960588en_US
dc.source.titleProceedings of the IEEE 25th Signal Processing and Communications Applications Conference, SIU 2017en_US
dc.subjectExponential familyen_US
dc.subjectIndividual sequence manneren_US
dc.subjectNonstationary sourceen_US
dc.subjectSequential density estimationen_US
dc.subjectProbability density functionen_US
dc.subjectDensity estimationen_US
dc.subjectEstimation of distributionsen_US
dc.subjectProbability density estimationen_US
dc.subjectTime varying parameteren_US
dc.subjectProbability distributionsen_US
dc.titleEstimating distributions varying in time in a universal manneren_US
dc.title.alternativeZamanla değişen dağılımların evrensel tahminien_US
dc.typeConference Paperen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Estimating distributions varying in time in a universal manner [Zamanla Deǧişen Daǧilimlarin Evrensel Tahmini].pdf
Size:
312.63 KB
Format:
Adobe Portable Document Format
Description:
Full Printable Version