Conics in sextic K3-Surface in P4

buir.contributor.authorDegtyarev, Alex
buir.contributor.orcidDegtyarev, Alex|0000-0001-6586-4094
dc.citation.epage32en_US
dc.citation.spage1en_US
dc.contributor.authorDegtyarev, Alex
dc.date.accessioned2022-02-17T11:40:31Z
dc.date.available2022-02-17T11:40:31Z
dc.date.issued2021-11-29
dc.departmentDepartment of Mathematicsen_US
dc.description.abstractWe prove that the maximal number of conics in a smooth sextic K3-surface X ⊂ P4 is 285, whereas the maximal number of real conics in a real sextic is 261. In both extremal configurations, all conics are irreducible.en_US
dc.identifier.doi10.1017/nmj.2021.3en_US
dc.identifier.eissn2152-6842
dc.identifier.issn0027-7630
dc.identifier.urihttp://hdl.handle.net/11693/77466
dc.language.isoEnglishen_US
dc.publisherCambridge University Pressen_US
dc.relation.isversionofhttps://doi.org/10.1017/nmj.2021.3en_US
dc.source.titleNagoya Mathematical Journalen_US
dc.titleConics in sextic K3-Surface in P4en_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Conics_in_sextic_K3-Surface_in_P4.pdf
Size:
1.03 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.69 KB
Format:
Item-specific license agreed upon to submission
Description: