Conics in sextic K3-Surface in P4
buir.contributor.author | Degtyarev, Alex | |
buir.contributor.orcid | Degtyarev, Alex|0000-0001-6586-4094 | |
dc.citation.epage | 32 | en_US |
dc.citation.spage | 1 | en_US |
dc.contributor.author | Degtyarev, Alex | |
dc.date.accessioned | 2022-02-17T11:40:31Z | |
dc.date.available | 2022-02-17T11:40:31Z | |
dc.date.issued | 2021-11-29 | |
dc.department | Department of Mathematics | en_US |
dc.description.abstract | We prove that the maximal number of conics in a smooth sextic K3-surface X ⊂ P4 is 285, whereas the maximal number of real conics in a real sextic is 261. In both extremal configurations, all conics are irreducible. | en_US |
dc.identifier.doi | 10.1017/nmj.2021.3 | en_US |
dc.identifier.eissn | 2152-6842 | |
dc.identifier.issn | 0027-7630 | |
dc.identifier.uri | http://hdl.handle.net/11693/77466 | |
dc.language.iso | English | en_US |
dc.publisher | Cambridge University Press | en_US |
dc.relation.isversionof | https://doi.org/10.1017/nmj.2021.3 | en_US |
dc.source.title | Nagoya Mathematical Journal | en_US |
dc.title | Conics in sextic K3-Surface in P4 | en_US |
dc.type | Article | en_US |