On possible deterioration of smoothness under the operation of convolution
buir.advisor | Ostrovskii, Lossif V. | |
dc.contributor.author | Uludağ, A. Muhammed | |
dc.date.accessioned | 2016-01-08T20:19:01Z | |
dc.date.available | 2016-01-08T20:19:01Z | |
dc.date.issued | 1996 | |
dc.description | Ankara : Department of Mathematics and Institute of Engineering and Sciences, Bilkent Univ., 1996. | en_US |
dc.description | Thesis(Master's) -- Bilkent University, 1996. | en_US |
dc.description | Includes bibliographical references leaves 47. | en_US |
dc.description.abstract | We show that the convolution of two probability densities which are restrictions to R of entire functions can possess infinite essential supremuin on each interval. We also present several sufficient conditions of deterioration of smoothness under the operation of convolution. | en_US |
dc.description.provenance | Made available in DSpace on 2016-01-08T20:19:01Z (GMT). No. of bitstreams: 1 1.pdf: 78510 bytes, checksum: d85492f20c2362aa2bcf4aad49380397 (MD5) | en |
dc.description.statementofresponsibility | Uludağ, A Muhammed | en_US |
dc.format.extent | vi, 47 leaves | en_US |
dc.identifier.uri | http://hdl.handle.net/11693/18409 | |
dc.language.iso | English | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Convolution | en_US |
dc.subject | Smoothness | en_US |
dc.subject | Probability Density | en_US |
dc.subject | entire funetion | en_US |
dc.subject.lcc | QA385 .U49 1996 | en_US |
dc.subject.lcsh | Convolutions(Mathematics). | en_US |
dc.subject.lcsh | Limit theorems(Probability theory) | en_US |
dc.title | On possible deterioration of smoothness under the operation of convolution | en_US |
dc.type | Thesis | en_US |
thesis.degree.discipline | Mathematics | |
thesis.degree.grantor | Bilkent University | |
thesis.degree.level | Master's | |
thesis.degree.name | MS (Master of Science) |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- B033284.pdf
- Size:
- 1.44 MB
- Format:
- Adobe Portable Document Format
- Description:
- Full printable version